What does "public engagement" mean for climate geoengineering governance? Lessons from experiences on carbon capture and storage (CCS)

> International Symposium on Risk Governance of Science and Technology

> > December 15-17 2013 The University of Tokyo, Tokyo, Japan

Session 3 – Governing Risks of Climate Geoengineering

Shinichiro Asayama, PhD JSPS Research Fellow, Tohoku University, Japan <u>shin.asayama@gmail.com</u>

Public engagement in everywhere

- Big chorus of calling for "public engagement"
 - "citizen participation",
 - "public participation",
 - "public involvement", ...etc.
- For what purpose?
 - Engagement for behavior change (Whitmarsh et al. 2011)
 - O Engagement for *deliberation* (Rask et al. 2012)
- What role the public is expected to have?

Public engagement in science and technology governance

• The "deficit model" of scientific communication

- Public ignorance as the root of opposition to science/technology
- O Engagement for education and persuasion
- Criticisms and reflections on the "deficit model"
 - O Engagement as alibi or manipulation for technocracy (Wynne 2006)
 - O Engagement for **public trust** and **legitimacy** (Irwin 1995; Fisher 2005; Leach et al. 2005)
 - O Engagement for **democratizing the expertise** (Kleinman 2001; Stirling 2008)

"Upstream engagement" in climate engineering governance

O The 'Oxford Principles' (Rayner et al. 2009; Rayner et al. 2013)

- Public participation as principle governing the research of climate engineering
- The SPICE project (UK) was cancelled due to high public concern (*Pidgeon et al.* 2013)

Royal Society (2009)

- Public dialogue, engagement and research to explore public and civil society attitudes, concerns and uncertainties should therefore be a central part of any future programmes of work on geoengineering."
- The call for "upstream engagement" (Corner et al. 2012)
 - Ensuring the public dialogue at an early stage

Why is public engagement necessary?

Three Rationales for public engagement on SRM (Wylie et al. 2013)

• Normative motivation

• Moral requirement that all affected people should have a say on the decision.

O Instrumental motivation

• Better understanding of what the public concern and how to facilitate the dialogue.

• Substantial motivation

• Incorporation of diverse perspectives and improvement of the quality of decision.

Challenges of upstream engagement on SRM

(Corner et al. 2012; Wylie et al. 2013)

- Who should participate?
 - How to ensure that diverse and marginalized voices are included
- How the outcome feed into policy-making processes?
 - How to integrate public engagement into decision-making by the government, experts and industries
- **Unavoidable "framing effect**" by researchers into deliberation process
 - How to minimize the impact of the way information is presented
 - Researchers should be reflective on their unintended framing effects on people's responses

Comparative view – Climate Engineering, CCS, Nuclear Power

As a means to responding to climate change...

• Nuclear power as low-carbon energy technology

• CCS as technology enabling continued reliance of fossil fuel

• Climate engineering as "plan B" or "climate emergency"?

Nuclear power

- Established and implemented (Deployment)
- Political divide on "pro and con"

Climate

 Controversy over risks of accident and nuclear waste disposal

Benefit for energy security/economy ←→ Technological lock-in

1. Mining of fuel

CCS

(source: Haszeldine, Science, 2009)

(source: Climate Central)

CCS

 Under development/demonstration (Before deployment)

Climate

- Public ignorance on knowledge of CCS
- Controversy over risks of CO2 leakage from storage site
 - Benefit for continuation of fossil fuel economy ←→ "Carbon lock-in"

CCS

1. Mining of fuel

Climate Engineering

- O Before research
- Public ignorance on knowledge of CE
- Climate Controversy over uncertain and uneven risks of deployment (especially, SRM)
 - Complement to mitigation/"climate emergency"
 ←→ "Moral hazard"/"Termination" issue

(source: Haszeldine, Science, 2009)

(source: Climate Central)

CCS

Mining of fuel

Public perceptions – Nuclear Power and CCS

Nuclear Power (Bickentstaff et al. 2008; Poumadère et al. 2011; Poortinga et al. 2013)

- O Perception/Attitude is dependent on ideologies rather than knowledge
- "Reluctance acceptance" and/or "Conditional support"
 - Not favored, but consider if it helps for climate change
- Trust on the Gov./expert is critical

CCS (Hammond & Shackley 2010; Malone et al. 2010; Poumadère et al. 2011)

- Large ignorance or lack of knowledge on what is CCS
- Perception/Attitude is less solidified and fluid
- O Strong NIMBYism

• Generally support at global deployment, but oppose at local deployment

Comparative view – CCS and Climate Engineering (SRM) (1)

- O Low public awareness and knowledge on CCS and SRM
- Main rationale is based on response to "abrupt" climate change
 - CCS is <u>NOT</u> the energy producing technology
 - SRM can only be legitimated so as to avoid "tipping point"
- Controversy over uncertainty and risk
 - Uncertain consequences of deployment and long-term regulation
 - Unequal distribution of risks

Comparative view – CCS and Climate Engineering (SRM) (2)

Hype and hope of technology development

- CCS as "inevitable" for large CO2 emissions cut (Hansson 2012)
- O SRM as "cheap", "quick" and "effective" (Barrett 2008)

O "Interpretive flexibility" (Pinch and Bijker 1987)

- CCS as "political glue" of climate and energy communities (Tjernshaugen and Langhelle 2009)
- SRM as lure of techno-fix for alarmists and skeptics (e.g. Lomborg, the Heartland Institute) (Hamilton 2013)

O Path dependency and Technology lock-in

- O CCS: "Carbon lock-in" (Unruh 2000)
- O SRM: "Moral hazard/corruption" and "termination problem" (Preston 2013)

Comparative view – CCS and Climate Engineering (SRM) (3)

- Different scale of development/deployment
 - CCS is largely on *national* level
 - SRM is inherently on global/transnational level

O Higher ethical concerns over SRM

- SRM raises the questions on <u>deliberately</u> intervening the earth
- O "Playing God" or "Messing with nature" (Corner et al. 2013)

• SRM only as "plan B" or "climate emergency"

- O "Lesser of two evils" (Gardiner 2010)
- O "Lose-Lose situation" (Poumadère et al. 2011)

Critiques on public perception research of CCS

(Malone et al. 2010)

Survey as a tool for measuring "pseudo opinion"

- O Total lack of knowledge about CCS (e.g. Itaoka et al. 2009)
- Response of "Don't know at all": 69% (2003) and 81% (2007)

Biased "framing effects" on survey result

- Difficulty of the unbiased information (e.g. the influence of choices of wording)
- Unrealistic assumption of future ccs development/deployment

Construct of technology (CCS) "in isolation" or "out of context"

- Remove CCS from the public's day-to-day living contexts
- Exclude the social/cultural/ethical dimensions of public discourses

Critiques on public engagement research of CCS

- Public engagement as "add-on" or "end-of-pipe" activity to manage (or "manipulate") the public reaction (Markusson et al. 2012)
- What is **"effective"** public engagement approach? (Bradbury 2012)
 - Engagement for increasing public acceptability of CCS
 - "[I]f the reasons for a CCS project are sound, the plans carefully laid, and social conditions favourable, <u>a good engagement strategy should greatly increase</u> <u>the chances of acceptance</u>" (Hammond and Shackley 2010)
 - For that, early ("upstream") engagement and transparency preferred (Ashworth et al. 2010)
- But, it's mere reinvention of the "deficit model" of science communication (Wynne 2006)

Lessons for public engagement on SRM? (1)

O It's non-sense to ask if 'pro or con' in survey (Malone et al. 2010)

- "Acceptance" can be anything more than "not opposing"
- "Opposition" can be anything from "simply be silent" to "actively against"
- Explore "what people are endorsing or opposing in their judgments of acceptability" (Corner et al. 2012)
 - Social, ethical and political dimensions matter more than scientific and technological (Royal Society 2009)
 - Values, Norms, Worldviews, Trust,...etc.
- Design public deliberation **under the "real-world contexts**"
 - O Let people imagine the kinds of world that SRM might bring into being (Macnaghten and Szerszynski 2013)

Lessons for public engagement on SRM? (2)

Toward more democratic public engagement of SRM

- "Upstream" engagement is necessary, but not enough!
 - Public engagement might intentionally or unintentionally function as alibi only to legitimize the experts' decisions
- Abandon *instrumentalism* to "educate/persuade" the public
 - Clear provision of equity and justice is required

• Engagement in the heart of "responsible innovation" (Stilgoe et al. 2013)

Concluding remarks

- An idea of climate engineering (or SRM) is distinctive
 Not same as CCS or Nuclear Power as mitigation options
- But, public perception is dynamic, relative and contingent
 - Perception of CCS or Nuclear Power can be a reference point for that of SRM
 - **"Trade-off**" of public perceptions among SRM/CCS/Nuclear Power
 - *"Linkage"* or *"transfer"* of how the public understand science/technology
- Reflective and comparative research on public engagement of SRM is necessary
 - Among different technologies or policy scenarios
 - Among different social and political contexts (e.g. cross-country comparison)

Thank you for your patience...

Shinichiro Asayama

shin.asayama@gmail.com

