Introduction to Bone Marrow Transplant

Rohan Ahluwalia MD Washington University in St Louis 3rd Year Internal Medicine Resident

Overview

- Introduction to Stem cells
- What is a Bone Marrow Transplant
- History of Stem Cell Transplant
- Impact of Bone Marrow Transplant
- The Future of the process

What is a Stem Cell?

- 1908: Alexander Maksimov proposed for scientific use
- 2 types:
 - Embryonic Stem Cell:
 - taken from early stage of embryo
 - No approved treatment
 - Adult Stem cell

What is an Adult Stem Cell?

- Adult stem cells: repair system for the body, replenishing adult tissues
 - Self-renewal: the ability to go through numerous cycles of division while maintaining the undifferentiated state.
 - *Potency*: the capacity to differentiate into specialized cell types.

- is the spongy material found in the center of your bones
- resides mainly in the large bones like the hip bone and shoulder blade
- produces *hematopoietic* (blood-forming) stem cells

Bone Marrow

Cell in Bone Marrow

- Red blood cells:
 - distribute oxygen to body's tissues
 - Take CO₂ and other waste products from tissues to the lungs for expulsion.
- White blood cells: fight infections.
- Platelets, which induce the blood to clot.

Bone Marrow Transplant

- Also Known as Hematopoietic stem cell transplantation
- Goal: transfer healthy bone marrow cells into a person after the elimination of his/her own unhealthy bone marrow.
- taking stem cells from the bone marrow, filtering those cells, and providing them back either to the patient or to another person

Why Bone Marrow Transplant is Necessary?

- replace the bone marrow and refurbish its normal function after high doses of chemotherapy or radiation are given to treat a malignancy
 - "Rescue": lymphoma, breast cancer
- To replace diseased or non-functioning bone marrow with healthy functioning bone marrow
 - Leukemia, sickle cell disease

How is it done?

Bone Marrow Aspirate

Types of HSCT

Allogenic

The Allogeneic Transplant Process

Collection

Stem cells are collected from the patients bone marrow or blood.

2 Processing

Bone marrow or periferal blood is taken. to the processing lab gratory where the stem cells are concertrated and prepared for the freezing process

5 Infusion

Thawed stem cetts are infused into the patient.

High dose chemotherapy and/or radiation therapy is given to the patient.

Bone marrow or blood is preserved by freezing (cryopreservation) to keep stem cells alive until they are infused into the patient's bloodstream.

Not Just Any Blood Stem Cells Will Do

- success of a blood stem cell transplant relies upon the interactions of immune cells of patient and donor
- Normally, all cells within the patient's body coexist peacefully
- Matching patients with similar immune system very important

Risks

- Graft vs. Host disease
- Infections
- Need blood transfusions
- spend several weeks in the hospital
- experience nausea, vomiting, diarrhea, mouth sores, and extreme weakness

Finding a Suitable Donor

- National Marrow Donor Program
- •Odds of finding matched unrelated donor approximately 1 in 10,000.
- •Over 14 millions potential donors identified.
- •Suitable match found for 50% of patients.
- Average weight time 3-4 months.

NATIONAL MARROW DONOR PROGRAM®

Join the Registry

- Its easy to be a donor!
 - Confirm you meet basic registry guidelines.
 - Order registration kit.
 - Follow instructions on kit and collect a swab of cheek cells and return the kit.
 - Japan has highest rate of matched donors

- 1939 first documented human marrow transplant.
 - Not too successful; patient died 5 days later
- 1970s to present
 - Medication used to pre-treat GVHD
 - Better Treatment for infections
 - Improvement in Matching patients
 - 1973: Bone Marrow Registry

Evolution of Transplant

- By 2008, **700,000** patients worldwide had undergone transplantation and more than **125,000** patients survived 5 years or longer after transplantation
- Currently: 50,000 performed/year world-wide
- Over 5,000 transplants at Siteman since 1982. 400/year

Global Distribution of Transplants

Macroeconomic Factors and Transplant Rates

Transplant Activity in the U.S. 1980-2010

One-year survival for Acute Leukemias 1988-2009

Japan and Transplant

- Japan Bone Marrow Donor Program
 - Started in 1991
- Cord Blood Bank Network: started 1999
 - 20,000 units of cord blood collected
- Approximately 3500/year
- 300 000 volunteer donors
- Numbers are increasing each year

Finances of Transplant

- Total cost may vary depending on region
- Autologous Transplant: \$50-100,000
- Allogenic Transplant: \$150-200,000
 - Donor search fees \$10-25,000
 - Stem cell harvest: \$5-15,000
 - Actual Transplant cost
 - Post transplant cost: variable
 - Lodging fees/Transport
 - Follow up visits
 - Prescriptions
 - Home care

Cost effectiveness

- Quality Adjusted Life Years (QALY)
 - measure of disease burden to assess value of money for medical intervention
 - Intervention <\$50,000/per QALY effective
 - \$50,000-100,00 intermediate
 - >100,00/year not effective
- Study in Blood on Allogenic transplant cost
 - Cost was \$196,000
 - QALY: \$51,000/year life saved

The Future

- Embryonic stem cells may become a source of hematopoietic stem cells
- Histocompatibility problems may be solved by establishing comprehensive banks
- Increasing expansion of indications
- Decreasing toxicities
- Future progress depends on our ability to identify safer and better-targeted antitumor therapies

References

- 1 Thomas ED, Blume KG. Historical markers in the development of allogeneic
- hematopoietic cell transplantation. Biol Blood and Marrow Transplantation 1999;5:341-6.
- 2 Barnes DWH, Loutit JP. Treatment of murine leukemia with X-rays and homologous
- bone marrow. Brit Med J. 1956; 2:626-7.
- 3 Thomas ED, Collins JA, Herman EC, Ferrebee JW. Marrow transplants in lethally
- irradiated dogs given methotrexate. Blood 1962; 19:217-228.
- 4. Van Bekkum DW, de Vries MJ. Radiation chimeras New York Academic Press 1967.
- 5.Thomas ED, Lochte HL, LU WC, Ferrebee JW. Intravenous infusion of bone marrow in
- patients receiving radiation and chemotherapy. New Engl J of Med. 1957; 257:491-6.
- 6. Mathé G, Jammet H, Pendic B et al. Transfusion and grafts of homologous bone
- marrow in humans accidentally irradiated to high dose. Rev Franc Etudes Clin Biol. 1959;
- 4:226-9.
- 7. Mathé G, Amiel H, Schwarzenberg L et al Adoptive immunotherapy of acute leukemia:
- experimental and clinical results. Cancer Res 1965:25:1525-31.

