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targeted policies

« Conclusions



UNIVERSITY OF LEED

Global energy challenges and
the role of technology



World primary energy demand by
New POliCy Scenario (NPS) UNIVERSITY OF LEEDS

fuel -
g 000 2010
=
B 2035
4 000 -
3 000 A
2 000 -
1 000 - l
U -
Coal Renewables Nuclear

Source: IEA World Energy Outlook 2012



Primary energy demand per unit of
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Spending on net imports of fossil
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Energy-related CO, emissions
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The energy ‘trilemma’ UNIVERSITY OF LEED
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Technology is key to a sustainable,
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secure and affordable energy future
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Meeting global energy challenges requires a smarter,
more unified and integrated energy system

Source: IEA Energy Technology Perspectives 2012
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Contributions to global emissions
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Sectors Technologies
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Achieving the 2DS will require contributions from all sectors
and the application of a portfolio of clean technologies
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Progress with deploying clean

energy teChnoIogies UNIVERSITY OF LEED
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Renewables have seen notable
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Renewable power generation
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Fuel economy has improved, but
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large potential remains

Vehicle fuel economy, enacted and proposed standards
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Energy intensity must continue to
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Progress in energy intensity
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be achieved through best available technologies
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Global and regional energy
technology innovation trends



Deploying new energy technologies

takes time

ENERGY-TECHNOLOGY DEPLOYMENT
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Figure 1| Global production of primary energy sources. When a technology produces 1,000 terajoules
a year (equivalent to 500 barrels of oil a day), the technology is ‘available’. It can take 30 years to reach
materiality (1% of world energy mix). Projections after 2007 taken from Shell’s Blueprints scenario’.

Source: Kramer and Haigh, 2009



The energy technology
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Energy RD&D — IEA countries UNIVERSITY OF LEED
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Energy RD&D relative to GDP UNIVERSITY OF LEED
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Energy R&D vs total R&D in the
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Energy RD&D trends in selected
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Worldwide patent activity in

environmental technologies SLUKERSHNREEED
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Accelerating iInnovation through better
policies



Best practices on innovation policieS ynwersry o Leeps
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Source: IEA (2011a)
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A mix of policies is needed
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Technology policies tailored to
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technology & market characteristics

TECHNOLOGY CHARACTERISTICS KEY:
+.g., historical
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Wind? technical &/or economic -9 5een _
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Source: Wilson (2012)
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Policies for supporting

low-carbon technologies
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Source: IEA Energy Technology Perspectives 2010



Financial support alone is not
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enough

Impact vs remuneration for solar photovoltaics
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Japanese roof-top PV systems
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Heat pumps in Sweden and

Switzerland UNIVERSITY OF LEEDS
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Top-Runner programme in Japan UNIVERSITY OF LEED
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International co-operation leads to

Increases in co-invention RNLERS DOHEEED
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Joining an IA increases co-invention by 150% - 200% for CCS
and PV, and by 100% for biofuels, fuel cells and wind power

Source: OECD (2012)



Lessons from best practice
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policies

« Establish clear, stable, aligned support framework - to
attract investments

« Support a wide portfolio of technologies — there are no
silver bullets.

« Set up transitional incentives decreasing over time — to
foster technological innovation and move towards market
competitiveness

« Support knowledge flows and strengthen collaborative links
between actors

* Engage in appropriate international collaboration

« Don’t be afraid to experiment — failure is an inherent part of
the innovation process
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Rebalancing the innovation portfolio



Supply Is important, but

demand IS even more so UNIVERSITY OF LEEDS

Innovation Market Diffusion
(RD&D) formation

End-use & efficiency 300 — 3500
Fossil fuel supply >12 >>2 200 — 550
Nuclear >10 0 3-8
Renewables >12 ~20 >20
Electricity (gen & T+D) >>1 ~100 450 — 520
Other & unspecified >>4 <15 -

Total >50 <150 1000 - <5000

Source: Global Energy Assessment 2012



RD&D portfolios vs mitigation needs  yniversity of Leep
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Phases of technology diffusion

Coal Power (Global, 1908 -2000) - Unit Level & Industry Level Growth
Copacity data & fitted logistic functions indexed to K=1.0

1.4
th phas
i formative phase up-scaling phase ‘2 .gm: a3 : ©
K- » <
K=7306 units Vamum A & »
1oL K=1146 GW Capacity By
K=1005 MW /unit Average
=) K=241 MW/unit Unit
- 08 Capacity
% .
x
< A
£ o0s :
Cumulative
Total Unit
04 Numbers
. xCumuIatiue
Total Inudstry
Capacit
0.2 pacity
00 . = L] L] L] L] L] L] L] L] L] T L] L] L] L] L] L] L] L] L]
1908 1918 1928 1938 1548 1958 1968 1978 1988 1998
® Cumulative Total Capacity (MW) = Cumulative Total Capacity (MW)- logistic fit
® Cumulative Total No. of Units (#) = Cumulative Total No. of Units (#)- logistic fit
B Average Capacity of Units Additional (MW) — Average Capacity of Units Additional (MW)- logistic fit
A Maximum Capacity of Units Additional (MW) = Maximum Capacity of Units Additional (MW)- logistic fit
Source: Wilson (2012)

UNIVERSITY OF LEED




Learning rates for supply
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Future direction of Japan’s
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energy policy?

1. Realising the world’s most advanced energy-saving
society: Reform of the demand structure

2. Realising a distributed next-generation energy system:
Reform of the supply structure

3. Need for technical innovation to support the energy mix
conversion and reform of the energy supply-demand
structure

Source: Presentation by Hiroshi Asahi, ANRE, June 2012



Impacts of improved energy

efficiency for Japan
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EWS total primary Mtoe
energy demand m
Other renewables 4 32
@ Bioenergy 7 15
B Hydro 7 9
Nuclear 75 45
Gas 86 82
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Conclusions (1) UNIVERSITY OF LEED

« Accelerating the development and deployment of clean
energy technologies is central to meeting global energy
challenges

« Range of possible technology options, with energy
efficiency and renewables some of the most important

« Current progress on deployment is not sufficient

« Appropriate technology policies have an important role to
play in accelerating progress

 Need to learn from best practice policies and ensure a
balanced innovation portfolio



Conclusions (2) UNIVERSITY OF LEED

« Current review of energy policy likely to see Japan increase
its focus on distributed supply technologies and energy
efficiency

* Provides opportunity for Japan to build on its global
leadership in energy RD&D

« Asia is a major driver of energy trends and fast becoming a
global force in energy innovation

« Chance for Japan to work with other Asian nations to drive
forward successful energy innovation to meet global and
regional energy challenges
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