Centre for Integrated Energy Research

Meeting energy challenges through technology and innovation *Implications for Japan and the rest of Asia*

Prof. Peter Taylor

The 5th Energy Policy Roundtable, University of Tokyo 19 December 2012

Overview

- Global energy challenges and the role of technology
- Global and Asian energy technology innovation trends
- Accelerating innovation through better and more targeted policies
- **Conclusions**

Global energy challenges and the role of technology

World primary energy demand by fuel - New Policy Scenario (NPS)

Primary energy demand per unit of GDP and per capita (NPS)

Net energy self-sufficiency (NPS)

Spending on net imports of fossil fuels (NPS)

Source: IEA World Energy Outlook 2012

Energy-related CO² emissions (NPS)

The energy 'trilemma'

Technology is key to a sustainable, secure and affordable energy future

Meeting global energy challenges requires a smarter, more unified and integrated energy system

Contributions to global emissions reductions

UNIVERSITY OF LEEDS

Achieving the 2DS will require contributions from all sectors and the application of a portfolio of clean technologies

Progress with deploying clean energy technologies

 Cleaner coal power Nuclear power Renewable power CCS in power CCS in industry Industry **Buildings** Fuel economy Electric vehicles Biofuels for transport

Progress is too slow in almost all technology areas

Significant action is required to get back on track

Renewables have seen notable success

Renewable power generation

42%

Average annual growth in Solar PV

75%

Cost reductions in Solar PV in just three years in some countries

27%

Average annual growth in wind

Fuel economy has improved, but large potential remains

Vehicle fuel economy, enacted and proposed standards

The number one opportunity over the next decade in the transport sector, but few countries have standards in place

Energy intensity must continue to decline

Progress in energy intensity

Significant potential for enhanced energy efficiency can be achieved through best available technologies

Global and regional energy technology innovation trends

Deploying new energy technologies takes time

UNIVERSITY OF LEEDS

Figure 1 | Global production of primary energy sources. When a technology produces 1,000 terajoules a year (equivalent to 500 barrels of oil a day), the technology is 'available'. It can take 30 years to reach materiality (1% of world energy mix). Projections after 2007 taken from Shell's Blueprints scenario³.

Source: Kramer and Haigh, 2009

The energy technology innovation system

Energy RD&D – IEA countries

Energy RD&D relative to GDP

Energy R&D vs total R&D in the OECD

Energy RD&D – Japan

Energy RD&D trends in selected Asian countries

Source: Data from Kempener et al (2010) and IEA R&D statistics

Breakdown of RD&D spend (2008)

Source: Data from Kempener et al (2010) and IEA R&D statistics

Worldwide patent activity in environmental technologies

Patents filed in low-carbon technology areas have increased sharply since 2000, driven by renewable energy

Source: Haščič et al (2012)

Accelerating innovation through better policies

Best practices on innovation policies UNIVERSITY OF LEEDS

Source: IEA (2011a)

A mix of policies is needed

Technology policies tailored to technology & market characteristics

UNIVERSITY OF LEEDS

Source: Wilson (2012)

Policies for supporting low-carbon technologies

UNIVERSITY OF LEEDS

Government support policies need to be appropriately tailored to the stage(s) of technological development

Financial support alone is not enough

Impact vs remuneration for solar photovoltaics

Source: IEA (2011b)

Market barriers need to be addressed

Source: IEA (2011c)

Japanese roof-top PV systems

Heat pumps in Sweden and Switzerland

UNIVERSITY OF LEEDS

Top-Runner programme in Japan

International co-operation leads to increases in co-invention

Joining an IA increases co-invention by 150% - 200% for CCS and PV, and by 100% for biofuels, fuel cells and wind power

Source: OECD (2012)

- Establish clear, stable, aligned support framework to attract investments
- Support a wide portfolio of technologies there are no silver bullets.
- Set up transitional incentives decreasing over time to foster technological innovation and move towards market competitiveness
- Support knowledge flows and strengthen collaborative links between actors
- Engage in appropriate international collaboration
- Don't be afraid to experiment failure is an inherent part of the innovation process

Rebalancing the innovation portfolio

Supply is important, but demand is even more so

RD&D portfolios vs mitigation needs

UNIVERSITY OF LEEDS

Phases of technology diffusion

Capacity data & fitted logistic functions indexed to K=1.0 1.4 growth phase formative phase up-scaling phase 1.2 Maximum **K=7306 units** Unit K=1146 GW Capacity 1.0 K=1005 MW/unit Average K=241 MW/unit Index (K=1.0) Unit Capacity 0.8 0.6 Cumulative **Total Unit Numbers** 0.4 Cumulative **Total Inudstry** Capacity 0.2 0.0 1958 1968 1978 1918 1928 1988 1908 1938 1948 1998 Cumulative Total Capacity (MW) - Cumulative Total Capacity (MW) - logistic fit . Cumulative Total No. of Units (#) Cumulative Total No. of Units (#)- logistic fit ٠ -Average Capacity of Units Additional (MW) - logistic fit Average Capacity of Units Additional (MW)

- Maximum Capacity of Units Additional (MW) - logistic fit

Coal Power (Global, 1908-2000) - Unit Level & Industry Level Growth

▲ Maximum Capacity of Units Additional (MW)

Source: Wilson (2012)

Learning rates for supply and end-use technologies

Future direction of Japan's energy policy?

1. Realising the world's most advanced energy-saving society: Reform of the demand structure

- 2. Realising a distributed next-generation energy system: Reform of the supply structure
- 3. Need for technical innovation to support the energy mix conversion and reform of the energy supply-demand structure

Impacts of improved energy efficiency for Japan

Source: IEA World Energy Outlook 2012

Conclusions (1)

- Accelerating the development and deployment of clean energy technologies is central to meeting global energy challenges
- Range of possible technology options, with energy efficiency and renewables some of the most important
- Current progress on deployment is not sufficient
- Appropriate technology policies have an important role to play in accelerating progress
- Need to learn from best practice policies and ensure a balanced innovation portfolio

Conclusions (2)

- Current review of energy policy likely to see Japan increase its focus on distributed supply technologies and energy efficiency
- Provides opportunity for Japan to build on its global leadership in energy RD&D
- Asia is a major driver of energy trends and fast becoming a global force in energy innovation
- Chance for Japan to work with other Asian nations to drive forward successful energy innovation to meet global and regional energy challenges

References

GEA (2012) *Global Energy Assessment – Toward a Sustainable Future*, Cambridge University Press, Cambridge, UK and the International Institute for Applied Systems Analysis, Laxenburg, Austria.

Haščič, I *et al* (2012) *Inducing innovation in environmental technologies through public policy*, OECD Environment Directorate, Workshop on Environmental Technology Dissemination, WTO Committee on Trade and Environment, Geneva, 12 November 2012.

Hood, C (2011) *Summing up the parts: Combining policy instruments for least-cost climate mitigation strategies*, OECD/IEA, Paris.

IEA (2010) *Energy Technology Perspectives 2010*, OECD/IEA, Paris.

IEA (2011a) *Good practice policy framework for energy technology research, development and demonstration*, OECD/IEA, Paris.

IEA (2011b) *Deploying Renewables: Best and Future Policy Practice,* OECD/IEA, Paris.

IEA (2011c) *Progress Implementing the IEA 25 Energy Efficiency Policy Recommendations*, OECD/IEA, Paris.

IEA (2012) *Energy Technology Perspectives 2012*, OECD/IEA, Paris.

IEA (2012) *World Energy Outlook 2012*, OECD/IEA, Paris.

Kempener *et al* (2010) *Governmental Energy Innovation Investments, Policies, and Institutions in the Major Emerging Economies: Brazil, Russia, India, Mexico, China, and South Africa*. Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, MA.

Kramer, GJ and M Haigh (2009) No quick switch to low-carbon energy, Nature, 462, 568-569.

OECD (2012) *Energy and Climate Policy: Bending the Technological Trajectory*, OECD Studies on Environmental Innovation, OECD Publishing, Paris.

Wilson, C (2012). Up-scaling, formative phases, and learning in the historical diffusion of energy technologies. *Energy Policy,* 50, 81-94.

E: p.g.taylor@leeds.ac.uk

W: http://www.cier.leeds.ac.uk/people/energy/staff/p.g.taylor