### Centre for Integrated Energy Research



### Meeting energy challenges through technology and innovation Implications for Japan and the rest of Asia

Prof. Peter Taylor

The 5<sup>th</sup> Energy Policy Roundtable, University of Tokyo 19 December 2012

### Overview



- Global energy challenges and the role of technology
- Global and Asian energy technology innovation trends
- Accelerating innovation through better and more targeted policies
- Conclusions



# Global energy challenges and the role of technology

# World primary energy demand by fuel - New Policy Scenario (NPS)





# Primary energy demand per unit of GDP and per capita (NPS)





### Net energy self-sufficiency (NPS)





# Spending on net imports of fossil fuels (NPS)





Source: IEA World Energy Outlook 2012

# Energy-related CO<sub>2</sub> emissions (NPS)





Source: IEA World Energy Outlook 2012

### The energy 'trilemma'





# Technology is key to a sustainable, secure and affordable energy future





### Meeting global energy challenges requires a smarter, more unified and integrated energy system

# Contributions to global emissions reductions



**UNIVERSITY OF LE** 

### Achieving the 2DS will require contributions from all sectors and the application of a portfolio of clean technologies

# Progress with deploying clean energy technologies



Cleaner coal power Nuclear power Renewable power CCS in power CCS in industry Industry **Buildings** Fuel economy **Electric vehicles Biofuels for transport** 

Progress is too slow in almost all technology areas

Significant action is required to get back on track

# Renewables have seen notable success

## 

#### **Renewable power generation**





42%

Average annual growth in Solar PV

### 75%

Cost reductions in Solar PV in just three years in some countries 27%

Average annual growth in wind

# Fuel economy has improved, but large potential remains



#### Vehicle fuel economy, enacted and proposed standards



The number one opportunity over the next decade in the transport sector, but few countries have standards in place

# Energy intensity must continue to decline



#### **Progress in energy intensity**



## Significant potential for enhanced energy efficiency can be achieved through best available technologies



# Global and regional energy technology innovation trends

# Deploying new energy technologies takes time



**UNIVERSITY OF LEEDS** 

**Figure 1** | **Global production of primary energy sources.** When a technology produces 1,000 terajoules a year (equivalent to 500 barrels of oil a day), the technology is 'available'. It can take 30 years to reach materiality (1% of world energy mix). Projections after 2007 taken from Shell's Blueprints scenario<sup>3</sup>.

Source: Kramer and Haigh, 2009

# The energy technology innovation system





### **Energy RD&D – IEA countries**





### **Energy RD&D relative to GDP**





# Energy R&D vs total R&D in the OECD





Source: Global Energy Assessment 2012



### Energy RD&D – Japan



# Energy RD&D trends in selected Asian countries





Source: Data from Kempener et al (2010) and IEA R&D statistics

### Breakdown of RD&D spend (2008)





Source: Data from Kempener et al (2010) and IEA R&D statistics

# Worldwide patent activity in environmental technologies





## Patents filed in low-carbon technology areas have increased sharply since 2000, driven by renewable energy

Source: Haščič et al (2012)



# Accelerating innovation through better policies

### Best practices on innovation policies UNIVERSITY OF LEEDS



Source: IEA (2011a)

### A mix of policies is needed





# Technology policies tailored to technology & market characteristics



**UNIVERSITY OF LEEDS** 

### Policies for supporting low-carbon technologies

## UNIVERSITY OF LEEDS



## Government support policies need to be appropriately tailored to the stage(s) of technological development

# Financial support alone is not enough





Impact vs remuneration for solar photovoltaics

Source: IEA (2011b)

# Market barriers need to be addressed





Source: IEA (2011c)

### Japanese roof-top PV systems





# Heat pumps in Sweden and Switzerland



### **Top-Runner programme in Japan**





# International co-operation leads to increases in co-invention





Joining an IA increases co-invention by 150% - 200% for CCS and PV, and by 100% for biofuels, fuel cells and wind power

Source: OECD (2012)



- Establish clear, stable, aligned support framework to attract investments
- Support a wide portfolio of technologies there are no silver bullets.
- Set up transitional incentives decreasing over time to foster technological innovation and move towards market competitiveness
- Support knowledge flows and strengthen collaborative links between actors
- Engage in appropriate international collaboration
- Don't be afraid to experiment failure is an inherent part of the innovation process



## **Rebalancing the innovation portfolio**

# Supply is important, but demand is even more so



|                         | Innovation<br>(RD&D) | Market<br>formation | Diffusion    |
|-------------------------|----------------------|---------------------|--------------|
| End-use & efficiency    | >>8                  | 5                   | 300 – 3500   |
| Fossil fuel supply      | >12                  | >>2                 | 200 – 550    |
| Nuclear                 | >10                  | 0                   | 3 – 8        |
| Renewables              | >12                  | ~20                 | >20          |
| Electricity (gen & T+D) | >>1                  | ~100                | 450 – 520    |
| Other & unspecified     | >>4                  | <15                 | -            |
| Total                   | >50                  | <150                | 1000 - <5000 |

### **RD&D** portfolios vs mitigation needs

past and current R&D future technology needs into developing share in 2000-2100 cum. improved technologies, emission reduction shares by technology 100% 80% Nuclear 60% Renewables Fossil Fuels 40% Other Energy 20% Efficiency 0% 1974-2008 Min Mean Max 2008 In future mitigation scenarios public energy R&D (past, current R&D portfolio) (technology needs portfolio)

**UNIVERSITY OF LEEDS** 

### Phases of technology diffusion



Capacity data & fitted logistic functions indexed to K=1.0 1.4 growth phase formative phase up-scaling phase 1.2 Maximum K=7306 units Unit K=1146 GW Capacity 1.0 K=1005 MW/unit Average K=241 MW/unit Unit Capacity 0.8 0.6 Cumulative Total Unit Numbers 0.4 Cumulative Total Inudstry Capacity

1948

1958

1968

— Cumulative Total Capacity (MW) - logistic fit

Cumulative Total No. of Units (#)- logistic fit

1978

Average Capacity of Units Additional (MW)- logistic fit
Maximum Capacity of Units Additional (MW)- logistic fit

1988

1998

Coal Power (Global, 1908-2000) - Unit Level & Industry Level Growth

1918

Cumulative Total Capacity (MW)

Cumulative Total No. of Units (#)

1928

Average Capacity of Units Additional (MW)

Maximum Capacity of Units Additional (MW)

1938

Source: Wilson (2012)

Index (K=1.0)

0.2

0.0

1908

.

### Learning rates for supply and end-use technologies





# Future direction of Japan's energy policy?



1. Realising the world's most advanced energy-saving society: Reform of the demand structure

- 2. Realising a distributed next-generation energy system: Reform of the supply structure
- 3. Need for technical innovation to support the energy mix conversion and reform of the energy supply-demand structure

# Impacts of improved energy efficiency for Japan





#### Source: IEA World Energy Outlook 2012

### **Conclusions (1)**

- Accelerating the development and deployment of clean energy technologies is central to meeting global energy challenges
- Range of possible technology options, with energy efficiency and renewables some of the most important
- Current progress on deployment is not sufficient
- Appropriate technology policies have an important role to play in accelerating progress
- Need to learn from best practice policies and ensure a balanced innovation portfolio

### **Conclusions (2)**

- Current review of energy policy likely to see Japan increase its focus on distributed supply technologies and energy efficiency
- Provides opportunity for Japan to build on its global leadership in energy RD&D
- Asia is a major driver of energy trends and fast becoming a global force in energy innovation
- Chance for Japan to work with other Asian nations to drive forward successful energy innovation to meet global and regional energy challenges

#### References

GEA (2012) *Global Energy Assessment – Toward a Sustainable Future*, Cambridge University Press, Cambridge, UK and the International Institute for Applied Systems Analysis, Laxenburg, Austria.

Haščič, I *et al* (2012) *Inducing innovation in environmental technologies through public policy*, OECD Environment Directorate, Workshop on Environmental Technology Dissemination, WTO Committee on Trade and Environment, Geneva, 12 November 2012.

Hood, C (2011) Summing up the parts: Combining policy instruments for least-cost climate mitigation strategies, OECD/IEA, Paris.

IEA (2010) Energy Technology Perspectives 2010, OECD/IEA, Paris.

IEA (2011a) Good practice policy framework for energy technology research, development and demonstration, OECD/IEA, Paris.

IEA (2011b) Deploying Renewables: Best and Future Policy Practice, OECD/IEA, Paris.

IEA (2011c) Progress Implementing the IEA 25 Energy Efficiency Policy Recommendations, OECD/IEA, Paris.

IEA (2012) Energy Technology Perspectives 2012, OECD/IEA, Paris.

IEA (2012) World Energy Outlook 2012, OECD/IEA, Paris.

Kempener *et al* (2010) *Governmental Energy Innovation Investments, Policies, and Institutions in the Major Emerging Economies: Brazil, Russia, India, Mexico, China, and South Africa.* Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, MA.

Kramer, GJ and M Haigh (2009) No quick switch to low-carbon energy, Nature, 462, 568-569.

OECD (2012) *Energy and Climate Policy: Bending the Technological Trajectory*, OECD Studies on Environmental Innovation, OECD Publishing, Paris.

Wilson, C (2012). Up-scaling, formative phases, and learning in the historical diffusion of energy technologies. *Energy Policy*, 50, 81-94.





#### E: p.g.taylor@leeds.ac.uk

W: http://www.cier.leeds.ac.uk/people/energy/staff/p.g.taylor