Lessons Learned and Challenges for Nuclear Power in South Korea after Fukushima Nuclear Disaster

Jungmin Kang
Visiting Professor, Lee Byong Whi Nuclear Energy Policy Center
Korea Advanced Institute of Science and Technology

Workshop "What Fukushima nuclear disaster brought about in Asia?"
The University of Tokyo, Tokyo, Japan
February 13, 2013
Contents

- Fukushima Accident
- Lessons Learned from Fukushima Accident
- Status and Prospect of Nuclear Power in South Korea
- Actions Taken in South Korea after Fukushima Accidents
- Challenges of Nuclear Power in South Korea
- Conclusions
Fukushima Accident

- East Japan Earthquake and Tsunami
 - 3/11/2011, 14:46, Magnitude 9.0, Tsunami Height > 14m
- Initiation of the Accident

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Fukushima Accident (cont)

- Progress of the Accident

- **Incomplete Design, Siting & Preparedness**
 - Site characteristics
 - Severe accident
 - Procedures & training

- **Earthquake + Tsunami**
 - Loss of power
 - Equipment failure
 - Loss of reactor instrumentation
 - Difficulty in external measures

- **Loss of Core Cooling**
 - Core Melt & Hydrogen Generation

- **Hydrogen Explosion**
 - + Reactor Building Damage

- **Large Release of Radioactive Materials**
 - (Atmosphere, Land, Sea)

Secure Safe Cooling of Damaged Reactors/SFPs and Stop Further Radioactivity Releases

Decontamination, Decommissioning and Disposal of Facility (incl. Environmental Restoration)

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Fukushima Accident (cont)

- Key Characteristics of the Accident
 - Severe Accident Initiated by an Extreme Natural Disaster
 - TMI & Chernobyl: Design/equipment failure + human factors
 - Fukushima: Natural disaster+ siting/design/equipment failure + human factors
 - Prolonged losses in electricity supply & safety-related equipment due to earthquake/tsunami
 - Severe Accident in Multiple Units and for a Long Time
 - Extensive core melting in three (3) reactors
 - Large-scale hydrogen explosion in three (3) reactor buildings
 - Damage in reactor vessels and primary containment vessels
 - Threat to the integrity of spent fuels in SFPs
 - Several months in escaping from very urgent situation
 - Environmental Contamination and Societal Crisis due to Large Release of Radioactive Materials
 - Large radioactivity release: ~20% of Chernobyl, INES Level 7
 - No immediate casualty due to radiation exposure
 - Extensive contamination, large no. of evacuees, several decades for restoration ➔ societal crisis and enormous economic impact

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Lessons Learned from Fukushima Accident

- Lessons - Safety Approaches and Systems
 - Improvement and strengthening of defense in depth strategy
 - Consideration of societal crisis aspects in nuclear safety objectives
 - Further improvements of regulation and standards for radiation safety and emergency evacuation
 - Strengthened independence & expertise of regulatory bodies
 - Emphasized role and enhanced capability of operating organizations in assuring NPP safety

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Lessons Learned from Fukushima Accident (cont)

- Lessons - Prevention of Severe Accidents
 - Enhanced capability against natural disasters
 - Improvements in diversity & reliability of emergency power supply systems
 - Reliable decay heat removal by strengthened passive safety
 - Risk informed design and operation of NPPs
 - Reassessment & enhancement of the safety of spent fuel storage

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Lessons Learned from Fukushima Accident (cont)

- Lessons - Mitigation of Severe Accidents
 - Practical countermeasures against severe accidents
 - Improvement of NPP procedures, covering up to extreme severe accident scenarios: Imagine the unimaginable
 - Enhancement of NPP instrumentation to provide reliable information during accidents
 - Role of creative experts for events outside the scope of existing procedures

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Lessons Learned from Fukushima Accident (cont)

- Lessons - Emergency Response Systems
 - Strengthening of emergency response system against large-scale accidents
 - Reinforcement of emergency response facilities incorporating deteriorated conditions
 - Reliable monitoring & assessment of radiation & radioactivity
 - Enhanced medical systems for radiation emergency
 - Exposure management of emergency workers
 - Crisis communication
 - Preparedness for accidents at neighboring countries

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Lessons Learned from Fukushima Accident (cont)

- Lessons - Other Aspects
 - Strengthening of safety culture, including an independent assessment system
 - Effective nuclear safety research and sharing of research outputs
 - Efforts to enhance public understanding on radiations and their effects

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Lessons Learned from Fukushima Accident (cont)

- Fukushima Accident Asks Us:
 - To Escape from Self Satisfaction or Over-Confidence on NPP Safety
 - To Strengthen Countermeasures against External Events as well as Internal Equipment Failures
 - Consider very low-likelihood natural events in design
 - Prepare against prolonged loss of AC power
 - To Strengthen Countermeasures against Severe Accidents
 - Reliable measurement of plant parameters even for severe accidents
 - Severe accident mitigation features including hydrogen control
 - Consideration of severe accident in procedures and operator training
 - Emergency planning and exercise against worst scenarios
 - To Strengthen the Communication of Safety Information

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Status and Prospect of Nuclear Power in South Korea

(Quoted from material by Hoon-Pyo Hong, MEST, January 2013)
Status and Prospect of Nuclear Power in South Korea (cont)

Figure. Installed nuclear capacity in South Korea (1980-2030)
** Actions Taken in South Korea after Fukushima Accidents **

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 11, 2011</td>
<td>Special Safety Inspection - 50 recommendations</td>
</tr>
<tr>
<td>Mar. 23, 2011 - Apr. 30</td>
<td>Licensee’s implementation plan(Jul. 8, 2011) & Regulatory review</td>
</tr>
<tr>
<td>Apr 6, 2011</td>
<td>Task Force (Office of Prime Minister, Government Ministry)</td>
</tr>
<tr>
<td>Oct 26, 2011</td>
<td>NSSC launched</td>
</tr>
</tbody>
</table>

(Quoted from material by Chang-Sun Kang of NSSC, April 2012)
Actions Taken in South Korea after Fukushima Accidents (cont)

- Identification of Vulnerability and Safety Improvements
 - Special Safety Inspection (SSI) on NPPs (2011.3-4)
 - Determine Safety Improvements vs. Fukushima (2011.5-7)

- Strengthened Regulatory System
 - Refinement of Safety Inspection System (2012.4)

- Public Outreach and International Cooperation
 - Strengthening Environmental Radiation Monitoring
 - Daily Briefing at Press Conference and Web-pages
 - Cooperation with Neighboring Countries
 - Korea-Japan-China Cooperation, including Top Regulators’ Meeting (TRM)

(Quoted from material by Chang-Sun Kang of NSSC, April 2012)
Actions Taken in South Korea after Fukushima Accidents (cont)

- Special Safety Inspection (SSI) by Regulatory Body
 - March 23 ~ April 30, 2011; 73 Experts
 - 21 Operating NPPs, 1 Research Reactor, and Emergency Medical System
 - Main Focus on Unlikely Worst Case Scenarios, including
 - Extreme natural disaster (earthquake + tsunami)
 - Loss of off-site power and failure of emergency DGs (SBO)
 - Severe accident

- Objectives
 - How well are the NPPs designed against natural disasters?
 - How well can they mitigate the severe accident?
 - How much effective are the emergency response systems in place?

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Actions Taken in South Korea after Fukushima Accidents (cont)

- Approaches of SSI

Defense-in-Depth Actions to secure safety of NPPs against extreme natural hazards

1. Strengthen emergency plan against extreme accidents
 - To improve emergency preparedness, manage accident and consider multi-units accident

2. Minimize radioactive release to environment
 - To ensure the containment integrity to prevent hydrogen explosion

3. Avoid severe accidents
 - To secure reactor cooling and power supply capabilities under the failure of safety system by natural hazards

4. Protect NPPs from natural hazards
 - To prepare countermeasures against beyond design earthquake and tsunami

(Quoted from material by Chang-Sun Kang of NSSC, April 2012)
Actions Taken in South Korea after Fukushima Accidents (cont)

- Outcomes of the SSI
 - No Imminent Risks to Operating Nuclear Facilities
 - 50 Action Items to Further Strengthen Defense in Depth
 - To minimize the impact of extreme natural disaster
 - To make available emergency power and ultimate heat sink
 - To ensure containment building integrity and emergency response capability

- Examples of Action Items
 - Re-evaluation of seismic capability of safe shutdown system
 - Installation of a mobile emergency generator and battery
 - Installation of passive hydrogen removal equipment
 - Modification of 'radiological emergency plan' considering multiple emergency, etc.

(Quoted from material by Won-Pil Baek of KAERI, January 2013)
Actions Taken in South Korea after Fukushima Accidents (cont)

- Major Improvement

Safety Improvement against Extreme Natural Disasters

1. Higher seawall of Kori site (7.5m → 10m)
2. Mobile emergency generator and battery
3. Watertight door
4. Placement of Emergency Diesel Generator and Alternative AC in higher location
5. Water-proof pump
6. Installation of passive hydrogen removal system
7. Installation of venting/depressurization device

(Quoted from material by Chang-Sun Kang of NSSC, April 2012)
Actions Taken in South Korea after Fukushima Accidents (cont)

- **Major Improvement Based on Follow-up Measures**

<table>
<thead>
<tr>
<th>Accident Scenario</th>
<th>Major Means of Improvement</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence of Earthquake</td>
<td>Installing an Automatic Seismic Trip System</td>
<td>End by 2013</td>
</tr>
<tr>
<td>Occurrence of Coastal Flooding</td>
<td>Extension of Sea Wall of Kori NPP</td>
<td>End by 2012</td>
</tr>
<tr>
<td>Station Blackout</td>
<td>Stand-by of a Movable Generating Vehicle</td>
<td>End by 2014</td>
</tr>
</tbody>
</table>
| Loss of Cooling of Coolant and SFP | • Installing Conduits for Injecting from External Sources
 | • Ensuring Countermeasures when Loss of the Cooling Function of SFP Occurs | • End by 2015
 | • End by 2012 | |
| Hydrogen Explosion | Installing Passive Hydrogen Removal Equipment | End by 2013 |
| Release of Radioactive Substance | • Installing Containment Building Ventilation or Depression Facilities
 | • Securing Additional Radiological Protection Equipment | • End by 2015
 | • End by 2012 | |

(Quoted from material by Chang-Sun Kang of NSSC, September 2012)
Actions Taken in South Korea after Fukushima Accidents (cont)

- Nuclear Safety and Security Commission (NSSC)

 NSSC : Nuclear Safety and Security Commission
 KINS : Korea Institute of Nuclear Safety
 KINAC : Korea Institute of Nuclear Nonproliferation and Control

(Quoted from material by Chang-Sun Kang of NSSC, October 2012)
Actions Taken in South Korea after Fukushima Accidents (cont)

- Specific Activities of NSSC

- Licensing of Nuclear Facilities, Materials & Activities
- Inspection & Enforcement of Nuclear Facilities, Materials & Activities
- Incident & Emergency Preparedness & Response
- Non-Proliferation & Safeguards for global peaceful uses of nuclear energy
- Physical Protection against malevolent acts and terrorism
- Export & Import Control of sensitive material and technology

- Safety-related activities are technically supported by
- Security-related activities are supported by

(Quoted from material by Chang-Sun Kang of NSSC, April 2012)
Challenges of Nuclear Power in South Korea

- Draft legislation on “Nuclear Phase-out” by a numbers of National Assembly
- Publications of risk simulation report on postulated severe accident at NPPs by NGO
- Strong opposition to nuclear activities by local residents
 - Kori Unit 1 and Wolsong Unit 1
- Attitude of the Mass Media report raising suspicion

(Quoted from material by Kun-Woo Cho of KINS, January 2013)
Conclusions

- Fukushima disaster triggered South Korea to strengthen its NPPs safety unprecedentedly by incorporating measures based on lessons learned from the accident.

- Trust building among nuclear establishment and public needs to be more emphasized to resolve nuclear safety concerns of the public.
 - People cannot be safe without being feel safe.