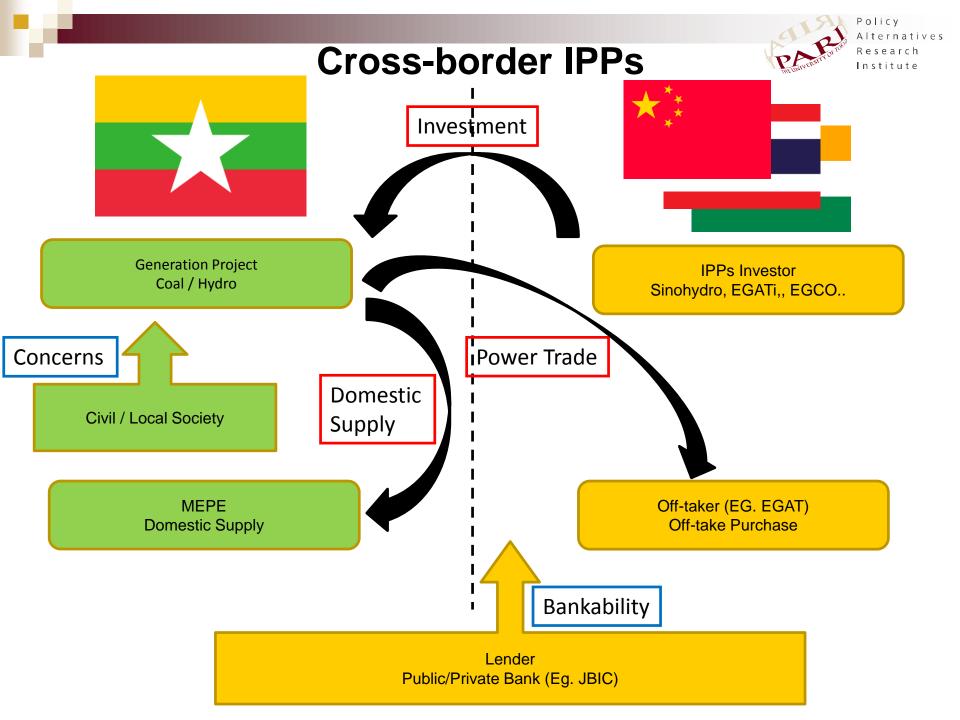


[Workshop on the Future Direction of Rural **Electrification in Myanmar**] Power Integration with Myanmar

Kensuke Yamaguchi Aisa Sano Prasert Reubroycharoen Hisashi Yoshikawa Ichiro Sakata

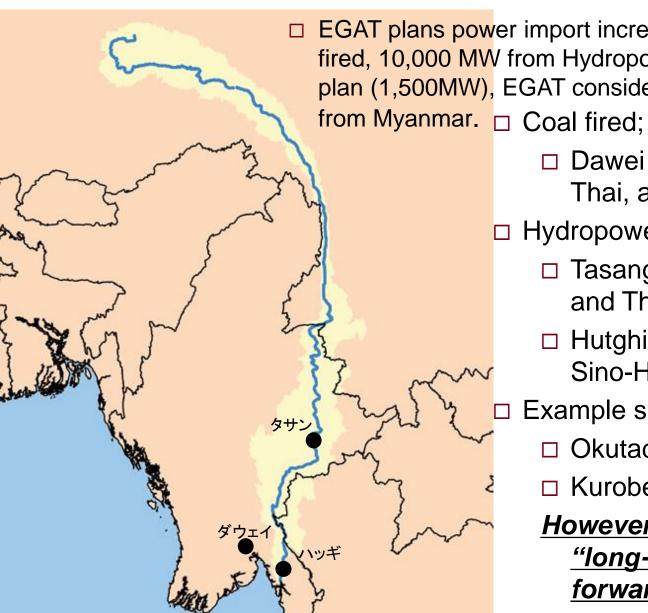
November 28, 2014 @ MLFRD

Research counter-part


- Energy Research Institute (ERI), Chulalongkorn University
- ERIA, member of Energy Research Institute Network

Research period

- 1st phase: October 1st 2013 June 30th 2014
- 2nd phase: July 1st 2014- June 30th 2015
- 3rd phase: July 1st 2015-Mar31st 2016


Research rationale

- Necessity of further power development for enhancing the rural electrification in Myanmar
- Utilization of the richer neighboring countries' capital in crafting win-win relationship
- Specifically, "cross-border IPPs" are strategic examples to achieve win-win relationship

IPP investment in Myanmar from Thailand

EGAT plans power import increase - 10,000 MW from Coal fired, 10,000 MW from Hydropower. Despite of the previous plan (1,500MW), EGAT considers to add up to 10,000 MW

- - □ Dawei; 7,000MW by EGCO, Ital-Thai, and Mitsubishi Corporation
- Hydropower (The Salween River)
 - □ Tasang; 6,300MW by Ratchaburi, and Three Gorges (三峡集団)
 - □ Hutghi; 1,190MW by EGATi, and Sino-Hydro (中国水電)
 - Example scale comparison ...
 - □ Okutadami Dam (560MW)
 - □ Kurobe Dam (335MW)

However, the plan remains the <u>"long-sitting" not moving</u> forward.

Stakeholder Meeting

2013			2014						
OCT	NOV	DEC	JAN FEB		MAR	APR	MAY	JUN	
$\Rightarrow \Rightarrow \Rightarrow$			$\Rightarrow \Rightarrow \Rightarrow$			$\Rightarrow \Rightarrow \Rightarrow$			
Literature		WS1	(Un)Structured		WS2	Structured		WS3	
Surveys		BKK	Hearing		BKK	Hearing		NPT	
Step 1:			Step 2:			Step 3:			
Identify the barriers on			Analyse the socio-			Seek for how to remove			
each case study			economic factors in			the identified barriers			
			identified barriers						

Framework for barrier analysis

- Current status of literatures
 - Previous study of IPP mostly focuses on the political and institutional barriers
 - Contrary, major literatures on barriers in FDI discusses wider range of barriers including social aspect
 - □ UN DESA (2005) indicates the typological approach to analyse barriers multi-dimensionally; (1) Technical, (2) Economic, (3) Political, (4) Legal, (5) Social and (6) Environmental aspects

Economic Barrier

Bank and Asian

Development Bank.

Social Barrier

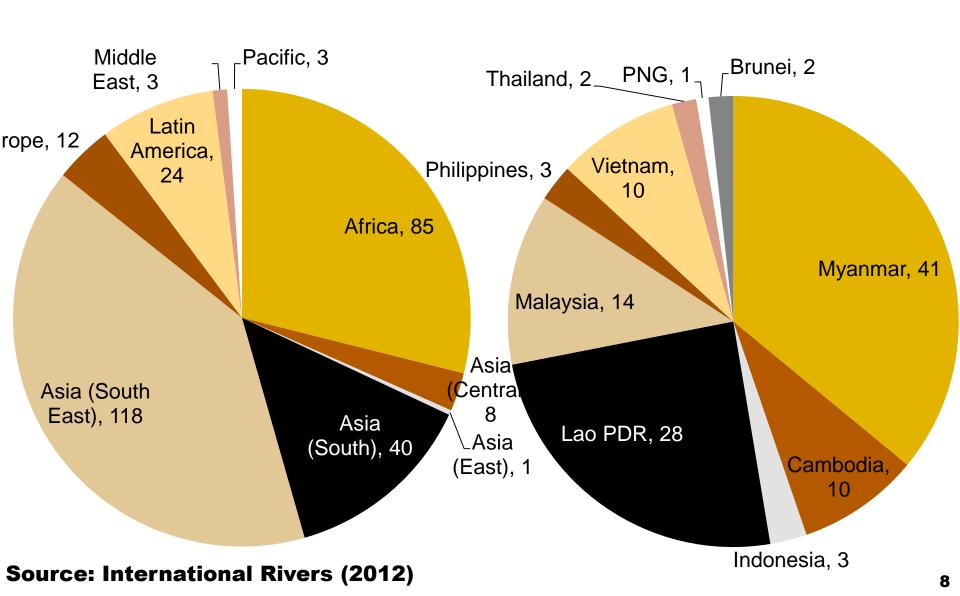
Recent environmental NGOs movement should be severer in near future.
A compensation payment attached to its relocation is not so huge as mega hydro.

areas.

attached to its relocation is not so huge as mega hydro. Larger and larger hydro plants have severer social/environmental impacts. Also, the dam location is mostly in armed conflict

Hydro Plant

Though its initial cost is huge, operational cost is low.
With the scale of economy, huge hydro (eg 7,000mw: Tasan) should be economically feasible.



How has hydro been invested?

Chinese Hydro-investment in Myanmar

Policy	
Alternativ	e s
Research Institute	
na)	
China)	
China)	
nina)	
China)	
nina	
nina	
rges + Ratchaburi	
o+ EGATi	
China)	
hina)	
hina)	
hina)	
(hina)	
(hina)	
hina)	
ndia)	
ndia)	
China)	
nai	

				Alternativ
() . Y	No	Name of Plant	Capacity	Shareholders Research
Some and the second	1	Myitsone(AyeyardyBasin)		CPI (China)
	2	Yenam(AyeyardyBasin)	1,200 MW	CPI (China)
₹ <u>*</u> **	3	Kawanglangphu	2,700 MW	CPI (China)
	4	Pisa (AyeyardyBasin)	2,000 MW	CPI (China)
<i>f f f f f f f f f f</i>	5	Wutsok(AyeyardyBasin)	1,800 MW	CPI (China)
INDIA & F	6	Chipwi(AyeyardyBasin)	2,800 MW	CPI (China)
	7	Laza(AyeyardyBasin)	1,900 MW	CPI (China)
	8	Chipwinge(AyeyardyBasin)	99 MW	CPI (China)
CHINA	9	Tapain(1)	240 MW	DUHD (China)
CHINA CHINA	10	Tapain(2)	168 MW	DUHD (China)
	11	Gawlan(Nawchankha)	100 MW	YPIC (China)
ARIVE SAIME SAIME SAIME	12	Wuxhongze(Nawchankha)	60 MW	YPIC (China)
	13	Hkankan(Nawchankha)	140 MW	YPIC (China)
	14	Tongxinqiao(Nawchankha)	320 MW	YPIC (China)
	15	Lawndin(Nawchankha)	435 MW	YPIC (China)
River Paunglaung River LAO:	16	Konlon(Upper Thanlwin)	1,400 MW	Hanergy(China)
	17	Naungpha	1,000 MW	Hydro China
% E ((18	Mantaung	200 MW	Hydro China
Paunglaung River	19	Tarsang	7,110 MW	Three Gorges + Ratchaburi
	20	Hutgyi	1,360 MW	Sinohydro+ EGATi
	21	Ywathit	600 MW	DUHD (China)
	22	KengTong (Namlwai)	96 MW	YNPG (China)
37 J2 J2 5	23	Wantapeng(Namlwai)	25 MW	YNPG (China)
THAILAND	24	Solu(Namlwai)	165 MW	YNPG (China)
Ca. My Carried	25	Mongwa(Namlwai)	50 MW	YNPG (China)
, }	26	Kengyan(Namlwai)	28 MW	YNPG (China)
ANDAMAN SEA & C	27	Heku(Namlwai)	88 MW	YNPG (China)
\$ \$	28	Htamanthi	1,200 MW	NHPC (India)
, } ~	29	Shwesarye	660 MW	NHPC (India)
' la l' - : \	30	Laymyo	500 MW	DUHD (China)
1, 18 ? ;	31	Tanintharyi	600 MW	Italian-Thai
N & () ?~~	32	Mawleik	520 MW	China Guodian
Constructed \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	33	Nampon	130 MW	DUHD (China)
Under Plan	34	Namtabat	110 MW	DUHD (China)
2 \ \frac{1}{2}	35	Namkha	200 MW	YNPG (China)
V 46.1	36	Shweli(2)	520 MW	HuanengLancang
c V	TOT	TAL	36,524	

vdra in Thankvin

China

China

Thailand

Thailand

Thailand

Thailand

Thailand

Developer

Ratchaburi.

Gorges

Datang,

Shwetaung

Goldwater

HydroChina, MEP

Sinohydro, Three

EGATi, Sinohydro, Sinohydro

tate

Shan

Shan

Shan

Kayah

Karen

Karen

Karen

Builder

Hanergy,

Goldwater

HydroChina

Sinohydro,

Three

Gorges

Status

Proposed

Proposed

Construction

Susepended

Suspended

Proposed

Proposed

Under

riy		Halliw	
Project	Capacity	Cross-	St
		horder	

1400MW

1000MW

7110MW

4000MW

4540MW

800MW

1360MW

Kun

Long

Nong Pa

Tasang

(Mai

Tong)

Ywathit

Weigyi

Saring1)

Dagwin

Saring2)

(Mae

Hatgyi

(Mae

What are barriers to implement mega-hydros?

Case1: Kun Long Dam

- In 2010, due to refusal of the Kokang resistance army to become a Border Guard Force (BGF), the Myanmar Army launched an offensive and seized control of the area, causing over 30,000 people to flee across the Chinese border.
- the Shan Human Rights Foundation (SHRF) reported that the construction of the dam in Kunlong township is not stable since it is close to the Kokang and Wa self-administrative regions, and there has been recent new displacement of villagers in Kutkhai due to skirmishes between Myanmar Army troops and the Ta'ang National Liberation Army (TNLA) as well as the KIA (Kachin Independence Army).
- According to SHRF, the construction of access roads to the Kunlong dam site has led to large scale land confiscation and destruction of houses, impacting over 60 villages with a population of around 20,000 people. The villagers have been given no compensation. At the dam site, about 500 workers are being employed at cement and gravel production plants.

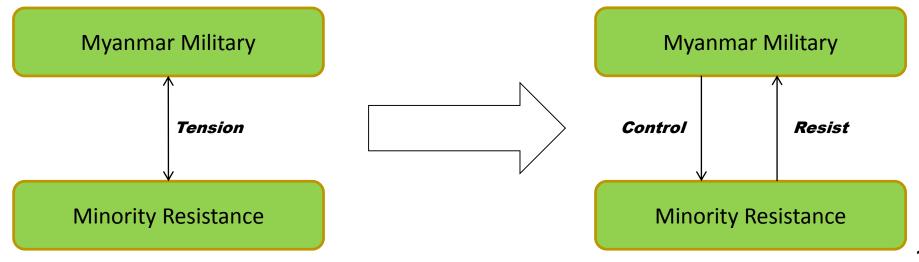
12

Case2: Tasang Dam

- Under a massive scorched earth campaign by the Myanmar Army starting in 1996, over 300,000 people have been forcibly relocated from their lands in southern Shan State, including from areas around the planned Tasang project site.
- SHRF reported that residents in areas slated to be flooded by the Tasang Dam were forced to work for Myanmar Army troops providing security for teak logging in the potential reservoir area. As a result of these serious abuses, there has been an ongoing influx of refugees into Thailand from Shan State.
- There are ongoing armed conflicts near the project site. In November 2013, clashes between the Shan State Army-South and the Myanmar Army took place near Ta Sob Bu on the Salween River.

Case3: Ywathit Dam

- Since 2010, surveying work for the Ywathit Dam in preparation for construction has been conducted jointly by a Chinese and Myanmar team. It was reported in December 2010 that a survey team was ambushed by Karenni resistance troops near Pruso, leading to the deaths of three Chinese engineers.
- In 2011, new military camps for Border Guard Force No. 1005 and special security troops were established to protect the Chinese dam builders. Also, the Myanmar Army Tactical Commander under No. 55 Regional Command based in Bawlake has been visiting the Ywathit area to monitor and strengthen security for the dam building team.
- The Karenni National Progressive Party (KNPP) reached a 14-point ceasefire agreement with the Myanmar Army in 2012. On 18 October 2013. U Chit La, the Karenni State Minister of Transport and Saw Hu Hu, Karenni State Minister of Electrict Power and Industry organized a public hearing at Pasaung township to inform local people that after the completion of a new 700 MW dam on the Salween, the villagers would get electricity.


A certain narrative

1 Dam site are located where the serious tension exists between the national army and minority's armed group.

2When the dam was planned in such an area, local villagers are relocated and employed as a forced labor, sometimes making the political refugees from Myanmar.

3The peace process between the national military and minority resistance is hampered.

Echoed by Stakeholders

- The dam plans are seen by many as being one of the strategies used by the military regime to gain foreign support and funding for its ongoing war effort. It is also viewed as a strategy to increase and maintain its control over areas of ethnic land after many decades of brutal conflict (Salween Watch).
- The Burma Rivers Network (BRN) is holding a press conference in Yangon today to urge the Myanmar government as well as Chinese and Thai investors to immediately stop plans to build dams on the Salween River, as this is causing conflict and directly undermining the peace process (OCT29, 2013, Burma River Network).

What are the community's "real" concerns?

What are the community's real concerns?

William and the community of toal confection.								
Potential Concerns								
I. Transparency			Fisheries					
I-1	Participation in decision-making	III-4	Water Flows					
I-2	Informed consent	IV. Dam Safety						
I-3	Benefit Sharing	IV-1	Earthquakes and Dam Breaks					
II. Social Impact of Dams		IV-2	Flooding					
II-1	Displacement	IV-3	Sudden Water Surges					
II-2	Food Security	V. Militarization						
II-3	Health Concerns	V-1	Forced Relocation					
II-4	Impacts on Women	V-2	Forced Labor					
II-5	Loss of Culture	V-3	Land Confiscation					
III. Environmental Impact		V-4	Sexual Violence					
III-1	II-1 Biodiversity		VI. Mining					
III-2	Forests	VII. Mangrove Loss						

1. Target Community

Community close to the Monton Hydro power

2. Questions

What are the real concerns and how it could be eased?

3. Schedule

2014					2015						
JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
$\Rightarrow \Rightarrow \Rightarrow$				$\Rightarrow \Rightarrow \Rightarrow$				$\Rightarrow \Rightarrow \Rightarrow$			
Literature Surveys		WS1	Survey:		WS2	Interview:		WS3			
BKK Lo			Local Community			BKK	Investors			NPT	
Step1			Step2			Step3					
To identify key barriers			To reveal the local			To deal with the local's					
in Salween development			community's perspective			concerns					

4. Outreach

Thai Investors (EGATi, Ratch, EGCO...)

Thank you for your attention! kyamaguchi@pp.u-tokyo.ac.jp