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When Category-based Indices Encounter Non-independent Categories:  
Solving the Taxonomy Issue in Resource-based Empirical Studies 

 

ABSTRACT 

Category-based measures such as the cosine index, Herfindahl index, entropy index, 

Euclidean distance, and Pearson’s correlation coefficient are widely applied in resource-based 

studies. However, when adopting these indices in empirical studies with respect to the categories 

of industry, technology, or knowledge, the inherent relatedness between the categories gives rise 

to a taxonomy issue, as the categories are not naturally inter-independent (as they are supposed 

to be in the application of the original indices) owing to inaccuracies in classification or 

categorization. Therefore, category-based indices may fail to produce a valid measurement, and 

this unmeasured relatedness can result in endogeneity in empirical analyses. To solve this issue, 

this study proposes new indices that can harness the relatedness information of categories. An 

example of mathematical constructive proof for the cosine index is given, and the development 

process provides a rigorous solution framework. In addition, this study thoroughly examines 

validity such as content validity, convergent validity, discriminant validity, internal consistency, 

and criterion-related validity. The results reveal that this approach performs as expected in 

empirical analyses. Finally, the mathematical interpretation and generality of this approach for 

other category-based indices such as the Herfindahl index, entropy index, Euclidean distance, 

and Pearson’s correlation coefficient are discussed. Interestingly, other proposed measures from 

existing literature, such as the concentric index, can also be incorporated into this solution 

framework. 
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INTRODUCTION 

The craftsman who wishes to do his work well must first sharpen his tools. 
— Confucius, 551–479 BC 

 
Achilles cannot overtake the tortoise so long as their progress is considered piecemeal, 
endlessly having the distance between them. However, as it is not Achilles but the method 
of measurement which fails to catch up with the tortoise, so it is not man but his method of 
thought which fails to find fulfillment in experience. 

—Alan Wilson Watts, 1958 
 

 
Numerous scholars have focused on innovation strategies and competitive advantages of firms 

according to the resource-based view (RBV). In addition, a considerable number of studies have 

examined the extent to which the composition and structure of a firm’s resources can influence 

its performance. When testing hypotheses with empirical data, scholars preferred adopting 

category-based indices for measurement,1 which include, but are not limited to, the cosine index, 

Herfindahl index, entropy index, Euclidean distance, and Pearson’s correlation coefficient. In 

applications of these indices, a category is usually defined to represent one specific type of taxon, 

such as industry (Neffke & Henning, 2012), technology (Sampson, 2007), knowledge (Van Der 

Vegt & Bunderson, 2005), and business function (Bunderson & Sutcliffe, 2002), which reflects 

the corresponding resource.  

As these indices are constructed upon categories, the taxonomy regarding how these 

categories and classification schemes are established should be an extremely important issue. 

Numerous classification schemes are constructed in different ways to meet various requirements. 

The old fashioned method of constructing a classification scheme usually relies on qualitative 

expert assessment and conventions. For example, in the taxonomy of the patent system, 

                                                            
1 The “category-based index” in the scope of this study refers to an index that involves dot product 

operations on vectors. They are sometimes referred to as “objective categorical measure” or “continuous 
measure” of diversification, rather than as the “subjective categorical measure” or “categorical measure” 
of diversification originally conducted by Wrigley (1970) and refined by Rumelt (1974). 



International Patent Classification (IPC) and U.S. Patent Classification (USPC) are popular and 

established conventional schemes to classify technologies. Another example is Standard 

Industrial Classification (SIC), which classifies industries. Of course, there are some limited 

attempts that adopt quantitative approaches to adjust the scheme generated from the qualitative 

classification (Schmoch et al., 2003). 

Regardless of which schemes are employed in empirical research, they must be in agreement 

with the underlying assumption that all categories must be inter-independent. For instance, in the 

aforementioned study by Bunderson and Sutcliffe (2002), nine categories (i.e., sales and 

marketing, manufacturing, distribution, service, personnel, R&D, accounting, administration, and 

general management) are implicitly and logically independent (or nearly independent) functional 

units in firms. However, this assumption has often been violated in most empirical studies, which 

involve non-independent categories such as industry, technology, expertise, and knowledge. For 

example, in the study by Sampson (2007), technological fields are believed to be related to one 

another, indicating possible dependency among the categories.  

This research question is extremely important because such inter-dependency may incur 

measurement error, and therefore potential endogeneity. The unmeasured relatedness among 

these categories correlates with the constructs employed as independent variables in empirical 

studies. In addition, such relatedness might influence dependent variables of interest. Therefore, 

when running a regression model, it will be absorbed by the error term and result in bias. 

Dahlin, Weingart, and Hinds (2005) were aware of this problem when employing the 

Herfindahl index in their study. However, they still assumed that the categories were proximately 

inter-independent. Rumelt (1982) also noticed the problem, but instead of using a Herfindahl-

based index, he proposed a new approach. In general, research that involves the utilization of 



category-based indices on non-independent categories may face such an issue (Breschi, Lissoni, 

& Malerba, 2003; Dahlin et al., 2005; Tallman & Li, 1996; Van Der Vegt & Bunderson, 2005) 

In the remainder of this study, we select one typical category-based index—cosine index—to 

demonstrate the proposed solution framework and correspondent constructive proof.2 Further, 

empirical data is employed to validate the new construct. Finally, the mathematical interpretation 

and generality of this approach for a variety of category-based indices such as the Herfindahl-

based index, entropy index, Euclidean distance, and Pearson’s correlation coefficient are 

discussed along with limitations and alternative solutions. 

 

CATEGORY-BASED INDICES 

Original and proposed category-based indices 

Despite the different definitions of category-based indices such as the cosine-based index, 

Herfindahl-based index, entropy index, Euclidean distance, and Pearson’s correlation coefficient, 

they are generally self-consistent when the categories are inter-independent. Such a dependency-

free condition is the underlying assumption, which is based on the idea that the indices provide a 

valid measurement of diversity. Studies in which categories with respect to focal attributes are 

perfectly independent or nearly independent may not suffer this issue. Such attributes include, 

but are not limited to, gender, ethnicity, age, tenure, and functional background (Bunderson & 

Sutcliffe, 2002; Jackson et al., 1991; Putnam, 2007).  

However, this dependency-free assumption is not always supported in other management-

related research, which involves utilizing these indices with respect to the categories of industry, 

                                                            
2 Please note that the remainder of this paper adopts the concept of “dissimilarity” for the cosine-based 

index. Alternatively, it can be replaced by the opposite concept of “similarity In addition, for simplicity of 
symbolic representation in mathematical equations, we use the term “cosine-based diversity index” and 
thus ݀஼௢௦௜௡௘ is taken to symbolize the index. 



technology, and knowledge (Breschi et al., 2003; Dahlin et al., 2005; Tallman & Li, 1996; Van 

Der Vegt & Bunderson, 2005). The following example demonstrates what occurs if the 

dependency-free condition is violated.  

First, the definition of the cosine-based diversity index ݀େ୭ୱ୧୬ୣ  is provided as follows. 

Alternatively, it can be written in a vector operation form in which ݇ଵ௜ and ݇ଶ௜ are elements in 

column vectors ݒଵሺ݇ଵଵ, …	݇ଵ௜, … ݇ଵ௡ሻ and ݒଶሺ݇ଶଵ, …	݇ଶ௜, … ݇ଶ௡ሻ with regard to an n-dimensional 

real number vector space ࢔ࡾ . The “cosine theta” part in the definition of the ݀େ୭ୱ୧୬ୣ  is an 

extension of the angular separation from ࡾ૜ to ࢔ࡾ, whereas “theta” is the angle between the two 

vectors (Gower, 1967). In application, the technology portfolio can be taken as the vector in 

computation: 

݀஼௢௦௜௡௘ ൌ 1 െ
∑݇ଵ௜ ݇ଶ௜

ට∑݇ଵ௜
ଶ ∑݇ଶ௜

ଶ
ൌ 1 െ

ଵݒ
ଶݒ்

ඥݒଵ
ଵݒ் ∗ ଶݒ

ଶݒ்
	

Following the method utilized in the study by Sampson (2007), we assume two firms in a 

strategic alliance that conduct collaborative R&D. Their technology portfolios are represented as 

,ଵሺ1ݒ 10, 2ሻ and ݒଶሺ10, 1, 2ሻ, respectively, and each dimension of vector ݒଵ and ݒଶ refers to each 

technology category that the firms involve. If all three technology categories are inter-

independent, then the cosine-based diversity index ݀஼௢௦௜௡௘ is equal to 
଼ଵ

ଵ଴ହ
. However, if the first 

technology category is considerably similar to the second, then the inherent actual technology 

diversity for the two firms should be very close to zero because their technology portfolios might 

be regarded as identical,. 

The non-independent issue of the category-based index indicates that the dependences 

between the categories need to be distinguished and then adjusted accordingly. We introduce the 

relatedness to measure such dependencies. This concept refers to relational characteristics 



between certain objects, and it is usually quantified to measure the extent to which objects are 

related. Relatedness has been widely discussed, including technological relatedness (Robins & 

Wiersema, 1995), industry relatedness (Teece et al., 1994), knowledge relatedness (Breschi et al., 

2003), skill relatedness (Neffke & Henning, 2012), and product relatedness (Rumelt, 1974). 

To address the above-mentioned issue, we propose a new category-based index that 

incorporates information on relatedness for each pair of non-independent categories as well as 

enables adjustment for these categories. Such additional information of relatedness can enhance 

measurement validity of diversity, and the endogeneity owing to unmeasured relatedness in 

original indices can be eliminated or reduced. Consider the following adjusted cosine-based 

index as a demonstration: 

݀஼௢௦௜௡௘ ൌ 1 െ
ଵݒ
ଶݒܯ்

ඥݒଵ
ଵݒܯ் ∗ ଶݒ

ଶݒܯ்
	

The relatedness matrix ܯ consists of all relatedness scores for each pair of categories. Each 

non-diagonal element ݎ௜௝  (that represents the relatedness between categories i and j) in ܯ 

includes its scores in [0, 1], and the diagonal consists of n ones (n refers to the number of 

categories): 

ܯ ൌ ൥
1 ⋯ ଵ௡ݎ
⋮ ⋱ ⋮
௡ଵݎ ⋯ 1

൩	

Finally, owing to the participation of the relatedness matrix ܯ , the values of the above 

proposed indices will shrink even though the minimum value of zero is maintained. Furthermore, 

to meet the preferences of some empirical samples, they can be further min–max normalized to 

[0, 1]. 



Constructive proof 

This section illuminates the process of constructing this proposed index in greater detail, thus 

also mathematically indicating its rigor and validity. At this stage, we assume that the relatedness 

matrix ܯ is already in possession. The next section discusses the approach for deriving this 

matrix. 

The first step in constructing this proposed index is to establish an n-dimensional oblique (i.e., 

non-orthogonal) coordinate system according to the relatedness matrix ܯ . The n dependent 

categories could be regarded as n non-perpendicular axes in an n-dimensional oblique coordinate 

system. In linear algebra, the n categories form a family of n linearly independent but non-

orthogonal vectors in an n-dimensional Euclidean space. The angle separation between any two 

axes reflects the extent of their geometrical proximity. It also implies the relatedness between the 

two correspondent technology categories when extended to this proposed application. Instead of 

the degree of an angle, the cosine is applied to make it consistent with the normalized relatedness 

scores generated above. Through these means, a system of non-linear equations can be 

established, and the n linearly independent but non-orthogonal vectors in the n-dimensional 

Euclidean space can be derived after the equations are solved. The system of equations is given 

in a matrix expression, as follows: 

ܣ்ܣ ൌ 	ܯ

in which ܣ represents n column vectors ܣ௜ of the desired solution: 

ܣ ൌ ⋯,ଵܣሺܣ , ௡ሻܣ ൌ ൥
ܽଵଵ ⋯ ܽଵ௡
⋮ ⋱ ⋮
ܽ௡ଵ ⋯ ܽ௡௡

൩	

To verify if ܣ is the solution, any two columns of ܣ௜ and ܣ௝ can be selected from ܣ. The dot 

product ܣ௜
௝ܣ் ൌ ‖௜ܣ‖ ௜௝ and magnitudeݎ ൌ 1, meeting the requirement for an oblique coordinate 

system. Note that in the scope of this study, the relatedness matrix is symmetric so that ݎ௜௝ ൌ  .௝௜ݎ



The second step includes a conversion between the n-dimensional oblique coordinate system 

and the n-dimensional Cartesian coordinate system through orthogonalization and normalization. 

A series of distinguished QR decomposition approaches can be applied to orthonormalize the 

oblique coordinate system, such as the Gram–Schmidt process (Trefethen & Bau III, 1997), 

Householder reflections (Householder, 1958), and Givens rotations (Givens, 1958). After being 

processed through any of these approaches, a transition matrix ܴ  is produced. The matrix ܴ 

mathematically represents the transition matrix for a transition from basis ܳሺܳଵ,⋯ , ܳ௡ሻ to basis 

⋯,ଵܣሺܣ ,  ௡ሻ. The resulting orthonormal basis can be regarded as a set of linearly independentܣ

virtual categories, and each axis in the basis represents one virtual category: 

ܣ ൌ ܴܳ	

Different QR decomposition approaches may lead to a different orthogonal matrix ܳ  and a 

corresponding transition matrix ܴ. However, any approach produces the same proposed index. 

Thus, it can be explained that a cosine-based diversity index captures the angular separation of 

the two technology portfolio vectors, which would not change in different Cartesian coordinate 

systems with respect to different orthonormal basis. In other words, a certain orthogonal matrix 

ܳ  might be seen as an outcome from a series of rotations and shift transformations of the 

standard basis ܫ (ܫ is unit matrix) in a Cartesian coordinate system. Moreover, in accordance with 

this, a correspondent transition matrix R can be derived.  

The third step is to transform original coordinates in accordance with a new orthonormal basis. 

This is achieved by left-multiplying the original coordinates with the transition matrix ܴ:  

ᇱݒ ൌ 	ݒܴ

This cosine-based diversity index can directly take technology portfolios as vectors in either 

an oblique or a Cartesian coordinate system. That is, each element ݇௜
′ 	in a new technology 



portfolio ݒ ′ሺ݇ଵ
′ , …	݇௜

′ , … ݇௡′ ሻ  represents a virtual number of resources in the specific virtual 

category i, analogous to the original technology portfolio. As a result, a new cosine-based 

diversity index is shown in the following form: 

݀஼௢௦௜௡௘ ൌ 1 െ
ሺܴݒଵሻ்ሺܴݒଶሻ

ඥሺܴݒଵሻ்ሺܴݒଵሻ ∗ ሺܴݒଶሻ்ሺܴݒଶሻ
ൌ 1 െ

ሺݒଵ
்்ܴሻሺܴݒଶሻ

ඥሺݒଵ
்்ܴሻሺܴݒଵሻ ∗ ሺݒଶ

்்ܴሻሺܴݒଶሻ
	

Furthermore, this expression can be simplified. With ܣ்ܣ ൌ ܣ and ܯ ൌ ܴܳ, it is possible to 

derive ்்ܴܴܳܳ ൌ ܯ . Due to the associative property of matrix multiplication and ்ܳܳ ൌ  ܫ

(where ܳ is the orthogonal matrix and ܫ is the unit matrix), ்ܴܴ ൌ  is obtained. As a result, the ܯ

expression of the new index becomes the form proposed at the beginning. 

It is important to note that the value of the proposed index becomes smaller than that of the 

original ones, because the angle between any two non-perpendicular axes in an original oblique 

system is an acute angle. This means that the corresponding categories i and j are related to the 

extent of ݎ௜௝ . Utilizing the Pythagorean equation, ܽଶ ൅ ܾଶ ൌ ܿଶ  (where ܿ  is the length of the 

hypotenuse, and ܽ and ܾ represent the lengths of the other two sides), for the distance will not 

hold in an oblique coordinate system and for non-independent categories. 3  Accordingly, 

௩భ
೅ெ௩మ

ට௩భ
೅ெ௩భ∗௩మ

೅ெ௩మ

 will produce a greater value than will 
௩భ
೅௩మ

ට௩భ
೅௩భ∗௩మ

೅௩మ

. In other words, if the coordinates 

are used in the original manner, in which dependency-free conditions cannot be secured, then the 

resulting cosine diversity index will be overestimated. This argument is consistent with what was 

addressed earlier: the diversity of interest is not supposed to be as diverse as the original 

diversity index measures, in the cases in which categories are related. 

 

                                                            
3 More mathematical details can be referred to on the basis of a generalization of the Pythagorean 

theorem (Sayili, 1960). 



RELATEDNESS MATRIX 

Approaches to measure relatedness 

In existing literature, there are three major approaches for measuring relatedness scores. The first 

is to manually assign fixed values that are derived directly from an established conventional 

hierarchical classification system (e.g., SIC and IPC). For practical use in empirical studies, 

scholars have employed an n-digit prefix of the classification code (the value of n depends on the 

level or granularity of the categories in need) by which the relatedness scores are determined on 

the basis of a principle that categories under the same hierarchical super-categories are more 

closely related than those under different super-categories. Examples of this type (either used 

alone or as a distance weight for other indices) are given in the literature on firm diversification 

(Chatterjee, 1990a; Finkelstein & Haleblian, 2002; Lien & Klein, 2006; Robins & Wiersema, 

1995) based on n-digit SIC codes.4 Furthermore, this type of method encounters a problem in 

that it indiscriminately assigns weights that merely depend on the hierarchical structure of the 

established classification system. However, such hierarchy itself is usually not reliable enough. 

For example, the frequently employed SIC system is believed to be vulnerable due to “varying 

degrees of breadth in the SIC classes” (Rumelt, 1982). 

The second approach is the economic regression-based approach, which is based on the co-

occurrence method pioneered by Engelsman and van Raan (1991). Neffke and Henning (2008) 

developed an index called, “Revealed Relatedness,” which can be interpreted as the ratio of the 

observed value over the estimated co-occurrence of two classes in a single entity (e.g., the co-

occurrence of two industries in a single plant for deriving industry relatedness). The predicting 

model is obtained after regression for factors such as average profitability in the industries, wage 
                                                            
4 For different granularities (i.e., n-digit), distance weight is assigned correspondingly different values, 

and it decreases when the granularity becomes finer (i.e., n becomes greater) as the relatedness scores are 
computed. 



levels, and fierceness of competition. In other words, the predicting model controls for economic 

factors that result in the attractiveness of diversification toward a specific industry; thus, the 

implying inherent relatedness can be revealed by establishing the fitted and predicted co-

occurrence as a benchmark (i.e., denominator in the ratio). This method can also be utilized to 

compute asymmetric relatedness in which the relatedness from i to j differs from the relatedness 

from j to i. For example, in a study by Neffke and Henning (2012), an examination regarding the 

dataset of labor flow among industries is conducted in this manner to investigate the relationship 

between skill relatedness and firm diversification.  

The third approach, a co-occurrence-based approach, follows Teece et al. (1994) and the 

relevant improved version by (Bryce & Winter, 2009). Teece et al. assumed that K firms are 

active in two or more industries, and the number of active firms in industry i represents the 

industry’s size. The co-occurrence of industries i and j partially reflects the propensity to 

participate and the extent to which the two industries are related. However, an adjustment is 

required since the raw co-occurrence counts rely not only on inherent relatedness but also on the 

industry sizes of i and j (i.e., appearances of industry in co-occurrence data). This adjustment is 

accomplished by assuming a random model to form a combination of firms in which industries i 

and j overlap. The random selection, as described above, leads to a hypergeometric distribution, 

and its mean and standard deviation can be derived. Eventually, the t-statistic style value is taken 

as the relatedness score for industries i and j. In other words, the essence behind this method is 

that the random model, which is under the assumption of no relatedness, is presumed, and the 

resulting mean μ and standard deviation σ are taken as the benchmarks in order to correct for 

industry size. Improving on this approach by Teece et al., Bryce and Winter (2009) added two 

consecutive steps: weighting the scores by economic importance, and generating the relatedness 



scores for industry combinations which were not observed in the focal data. Therefore, owing to 

its predictive validity, the present study’s proposed diversity index is based on the approach by 

Teece et al.  

However, applying Teece et al.’s relatedness scores to this proposed diversity index without 

modification is problematic. The “survivor principle” (Stigler, 1983) implies that information 

regarding co-occurrence reflects the relatedness of the relevant industries. This argument is 

logically reliable in the original application of Teece et al.’s approach on corporation 

establishment data (Teece et al., 1994). However, when it is extended to patent data, as in the 

study by Bryce and Winter (2009), the co-occurrence method abandons patent documents that 

are assigned to only one technology field. Therefore, it may incur information loss when 

applying the survivor principle as these patents also play the role of survivor. For example, 

consider IPC class C12M (described as “apparatus for enzymology or microbiology”) and H01R 

(described as “electrically-conductive connections; structural associations of a plurality of 

mutually-insulated electrical connecting elements; coupling devices; current collectors”). 

Although both have almost the same number of co-occurrences (1,313 vs. 1,387), the numbers of 

their single-technology patents (i.e., patents with only one technology field) differ significantly: 

single occurrences account for approximately 25.5 percent versus 88.1 percent of total 

occurrences (including both single occurrences and co-occurrences). That is, C12M is apt to 

associate with other technologies, whereas C12M is not. 

As a result, the “co-occurrence matrix” is replaced with the resulting “occurrence matrix” 

which also includes single-technology patents. And then we utilize it to develop the relatedness 

scores. The benefit is that completeness of the data’s information can be preserved while there is 

only a minor change in the construction of the relatedness.  



Construction of the relatedness matrix 

The first step in constructing the relatedness matrix is to establish the occurrence matrix. Unlike 

the method elaborated in existing literature about the co-occurrence matrix (Breschi et al., 2003; 

Bryce & Winter, 2009; Teece et al., 1994), we introduce concepts and tools from social network 

analysis and matrix algebra to explain the establishment of the matrix. One concept is the two-

mode network, in which the edges are always between two different sets of nodes. For example, 

“member–affiliation” data includes “member” as the first mode and “affiliation” as the second. It 

is also known as a “bipartite graph” in graph theory. In this case, the two-mode network for the 

patents data is established and stored in a two-mode matrix in which the rows represent 

technology categories and columns represent patents. Then the two-mode network is transformed 

into a one-mode network (technology–technology network), and by conducting matrix algebra 

multiplication, 	 ୲ܱୣୡ୦ି୲ୣୡ୦ ൌ ୲ܱୣୡ୦ି୮ୟ୲ୣ୬୲ܱ୲ୣୡ୦ି୮ୟ୲ୣ୬୲
୘  is obtained, in which ܱ୘  represents the 

transpose of matrix	ܱ. As a result, each cell in the one-mode matrix ୲ܱୣୡ୦ି୲ୣୡ୦ is:  

௜௝݋ ൌ ൜
݋ܿ	 െ ݅	݂݅									,݆	݀݊ܽ	݅	ݕ݃݋݈݋݄݊ܿ݁ݐ	݂݋	݁ܿ݊݁ݎݎݑܿܿ݋ ് ݆
݈݁݃݊݅ݏ	 െ ݅	݂݅												,݅	ݕ݃݋݈݋݄݊ܿ݁ݐ	݂݋	݁ܿ݊݁ݎݎݑܿܿ݋ ൌ ݆	

where ݋௜௝ is the observed co-occurrence or single occurrence of specific technologies. In addition, 

the row sum ݊௜ ൌ ∑ ௜௞௞݋  refers to the size of each technology i. 

The second step is to adjust the matrix by following the approach developed by Teece et al. 

(1994). We assume there is an equal likelihood that a technology tag is assigned to a patent. As a 

result, the extent x to which one patent is assigned both the technology i and j tags follows 

hypergeometric distribution. In this regard, the probability mass function is given as: 

ܲൣ ௜ܺ௝ ൌ ൧ݔ ൌ
൫௡೔௫ ൯ ቀ

௄ି௡೔
௡ೕି௫

ቁ

ቀ௄௡ೕቁ
	



where random variable ௜ܺ௝ refers to the number of patents that have both the technology i and j 

tags. In addition, ݊௜ , ௝݊ , and ܭ	represent the fixed sizes of technologies i and j and the total 

number of patents (given as parameters), respectively. More specifically, ௝݊ from ܭ patents are 

selected and assigned the technology j tag; hence, there are ቀ௄௡ೕቁ ways of achieving this. On the 

basis of this selection, x out of ݊௜ technology i tags are selected and assigned to x patents which 

already have the technology j tag. Furthermore, ௝݊ െ ݔ  out of ܭ െ ݊௜  other tags (i.e., except 

technology i) are selected and assigned to ௝݊ െ  patents, which already have the technology j ݔ

tag. Hence, there are ൫௡೔௫ ൯ ቀ
௄ି௡೔
௡ೕି௫

ቁ possible ways of achieving this. Then, the probability, as shown 

in the above probability mass function is obtained. Note that in this proposed approach, single-

technology patents are taken into account so that ݊௜, ௝݊, and ܭ consist of both co-occurrences 

and single occurrences in matrix ܱ୲ୣୡ୦ି୲ୣୡ୦ . That is, the single-technology patents have a 

likelihood equal to that of the multiple-technology patents in the selection described above. In 

this new assumption, the technology tags are randomly assigned to patents, including cases in 

which only one technology is assigned. Therefore, the expression ܲൣ ௜ܺ௝ ൌ  .൧ does not changeݔ

As a result, the mean of the distribution ߤ௜௝ ൌ ൫ܧ ௜ܺ௝൯ ൌ
௡೔௡ೕ
௄

 and the standard deviation ߪ௜௝ ൌ

ටߤ௜௝
ሺ௄ି௡೔ሻሺ௄ି௡ೕሻ

௄ሺ௄ିଵሻ
 are derived, and the t-statistic ݐ௜௝ ൌ

ை೔ೕିఓ೔ೕ
ఙ೔ೕ

 is taken as the output relatedness 

score in this second step.	

The third step is to normalize the relatedness scores. To establish dependency-free categories, 

the relatedness scores should be normalized to the range [0, 1]. The value of zero between two 

technologies means that they are independent, whereas the value between one means that they 

are inherently identical. Zero is assigned to all non-adjacent pairs of technologies because there 



is no co-occurrence in the data for non-adjacent pairs, which implies that they may not be related. 

Besides, the least related adjacent pairs after correction for ݊௜, ௝݊, and ܭ should be greater than 

zero (0.1 is assigned to these pairs) because they have shown some co-occurrence. Therefore, 

each non-diagonal element ݎ௜௝ (which represents the relatedness of technologies i and j) in the 

relatedness matrix ܯ includes scores in the range [0, 1], while the diagonal consists of n ones (n 

refers to the number of technologies): 

ܯ ൌ ൥
1 ⋯ ଵ௡ݎ
⋮ ⋱ ⋮
௡ଵݎ ⋯ 1

൩	

Three examples of relatedness scores can be given to demonstrate if the relatedness scores 

actually reflect the relatedness among technologies. First, besides the zero-value pairs of 

technologies (i.e., independent pairs), the least related pair (valued at 0.1) is G06F (described as 

“electric digital data processing”) and H01L (described as “semiconductor devices; electric solid 

state devices not otherwise provided for”). This pair has the greatest number of patent 

occurrences (74,149 and 54,162, respectively) and single occurrences (61,038 and 47,634, 

respectively). The shares of single occurrences for these two technologies are impressively large 

(82.3 percent and 87.9 percent, respectively), which implies that they do not generally connect to 

other technologies in patents. Thus, the relatedness score for this pair of technologies is expected 

to be low. Second, the most related pair (valued at 1) is A61K (described as “preparations for 

medical, dental, or toilet purposes”) and C07D (described as “heterocyclic compounds”). These 

two technologies include relatively large shares of overall co-occurrences (59.2 percent and 72.0 

percent, respectively), and they are frequently assigned to relevant patents at the same time (30.5 

percent of overall co-occurrences for A61K and 61.3 percent for C07D). Even in the 

documentary notes of A61K, C07D is mentioned as “attention is drawn to the notes in class C07, 

for example the notes following the title of the subclass C07D, setting forth the rules for 



classifying organic compounds in that class, which rules are also applicable, if not otherwise 

indicated, to the classification of organic compounds in A61K,” which suggests their close 

relationship. Third, even if the co-occurrences of two technologies are equivalent, they may 

differ in their relatedness scores owing to the different preferences of single-technology patents. 

As exemplified in the previous section, C12M and H01R have a similar number of co-

occurrences (1,313 and 1,387, respectively). However, their single occurrences differ 

substantially (450 and 10,298, respectively), which implies that C12M is comparably apt to 

associate with other technologies. As a result, their relatedness scores with the third-party 

technology B65D (described as “containers for storage or transport of articles or materials, e.g., 

bags, barrels, bottles, boxes, cans, cartons, crates, drums, jars, tanks, hoppers, forwarding 

containers; accessories, closures or fittings therefor; packaging elements; packages”) are 

different (0.30 and 0.28). In sum, these examples partially assure the validity of the relatedness 

scores by which the present study’s proposed cosine-based index can be further developed.5 

 

CONSTRUCT VALIDATION 

Validation methods 

A thorough examination of construct validation is usually exerted on five types of validity: 

content validity, convergent validity, discriminant validity, internal consistency, and criterion-

related validity (Campbell & Fiske, 1959; Hoskisson, Hitt, Johnson, & Moesel, 1993; 

Venkatraman & Grant, 1986). Each type reflects a distinct aspect of the measurement. 

                                                            
5 The data for constructing the relatedness matrix is the patent dataset from the National Bureau of 

Economic Research (NBER), which includes utility patents granted between 2000 and 2006 by the United 
States Patent and Trademark Office (USPTO) and 610 four-digit IPC codes chosen as categories of 
interest. This is similar to the one used in the following construct validation section. 



Content validity refers to the extent to which empirical measurement falls within a specific 

content domain. In other words, it reflects whether the measurement is suitable for content. For 

example, a measurement of mass, such as kilogram, cannot be applied to measure length even 

though it may have a strong correlation (e.g., in case of a fixed density and cross section area); 

therefore, content validity is not supported. In the context of non-independent categories, 

application of the proposed cosine-based index eliminates measurement error incurred by the 

non-independent condition, as elaborated in the aforementioned constructive proof. Therefore, 

the proposed diversity index resides in the valid content domain. 

Convergent validity reflects the degree to which different methods of measuring the same 

concept are in agreement. Discriminant validity, however, is the opposite of convergent validity; 

it reflects the extent to which a concept differs from others. An analytical tool for evaluating 

convergent and discriminant validity is the “multitrait-multimethod matrix” created by Campbell 

and Fiske (1959), by which we examine these two types of validity. Internal consistency 

represents the overall consistency of a focal measure. In general, a reliable measure should 

generate consistent results. Here Cronbach’s alpha (Cronbach, 1951) is utilized to investigate 

internal consistency.  

In examinations of convergent validity, discriminant validity, and internal consistency, two 

categorization schemes are adopted to represent parallel forms (or methods) of measurement: 

IPC and USPC. Both schemes are available in the U.S. patent dataset and are adaptive in a wide 

range of levels. More specifically, the analyses in the present study are based on four-digit IPC 

and three-digit USPC, which have been widely acknowledged as representatives of technology 

fields (Corrocher, Malerba, & Montobbio, 2007; Lanjouw & Schankerman, 2004; Lerner, 1994). 



Criterion-related validity, also known as nomological or predictive validity, is based on the 

degree to which the construct of interest functions in predicted relationships, as suggested in 

theory. In this regard, an example of empirical analysis is provided, which corresponds to the 

cosine-based diversity index. More specifically, regression models are employed to examine the 

relationship between “inter-citations” and “inter-firm technological diversity.” In this case, it is 

hypothesized that for any firm dyad (A, B), the likelihood of citing or being cited by patents from 

firm B for patents from firm A is negatively influenced by the extent to which the two firms 

differ with respect to their technological portfolios. Similarly, the number of citing or being cited 

patents is also hypothesized to be negatively associated to such diversity. Accordingly, the 

logistic and negative binomial models are applied to the examinations, respectively. The citations 

made and received between firms A and B are counted to first generate the dependent variable in 

negative binomial models, and then the resulting continuous variable is dichotomized to binary 

values (i.e., non-zero values as one) as dependent variables in the logistic models.  

Five constructs (number of overlapped categories, ratio of overlapped categories, original 

cosine diversity, hierarchy-adjusted cosine diversity, and proposed cosine diversity) are used as 

independent variables to proxy inter-firm technological diversity. The first four are introduced 

for comparison with the present study’s proposed measure. Number of overlapped categories 

refers to the number of overlapped four-digit IPCs (or three-digit USPCs) for a firm dyad. The 

ratio of overlapped categories, ranging between zero and one, is defined as the number of 

overlapped categories divided by the number of categories in the two technology portfolios from 

two collaborating firms. They are negatively correlated to inter-firm technological diversity. 

Hierarchy-adjusted cosine diversity is also weighted by the relatedness matrix. However, this 

matrix is derived from the hierarchical structure of the IPC scheme, which is similar to that 



utilized by the concentric index (Caves, Porter, & Spence, 1980). That is, each entry in the 

matrix is assigned a fixed relatedness score regarding hierarchical distance. 

Data 

The data for constructing the relatedness matrix are the well-known patent dataset from the 

NBER, which include utility patents granted between 2000 and 2006 by the USPTO. The 

granularity or level of aggregation of categorization in this study is with regard to technology 

fields, i.e., four-digit IPC codes or three-digit USPC codes, as mentioned above. Two distinct 

relatedness matrices are generated in accordance with the IPC and USPC categorization schemes. 

The former includes 610 IPCs and the latter comprises 699 USPCs. In addition, the relatedness 

matrix for computing hierarchy-adjusted cosine diversity is generated under the IPC scheme, 

which follows the approach used for the SIC scheme in its original application.6 For example, the 

relatedness scores between A01B and A01B, A01B and A01C, A01B and A21C, and A01B and 

B01B, are assigned 1, 2 3ൗ , 1 3ൗ , and 0, respectively. 

To examine convergent validity, discriminant validity, internal consistency, and criterion-

related validity, a sample for the cosine-based index is created as follows. First, we identify 

12,841 distinct firms which were granted utility patents by the USPTO in 2003. Next, 1,143 of 

these are selected on the basis of the rule that each firm has applied for 30–99 patents in 2000–

2002. There are two reasons why these firms are confined: 1) the technology portfolio of a firm 

may not be well represented if the firm has too few prior patents and 2) the size of the resulting 

sample equals the number of combination dyads of firms so that the number of firms cannot be 

too large; otherwise, the resulting sample would be too costly in computation. Finally, the 

                                                            
6 The four-digit IPC code includes three levels. For example, for IPC A01B, “A” refers to the top level, 

“01” refers to the second level, and “B” represents the third level. However, the three-digit USPC is 
usually regarded as “flat,” i.e., all three-digit codes lie on the same level. Thus, the relatedness matrix for 
hierarchy-adjusted cosine diversity is only generated under the IPC scheme. 



resulting sample consists of 652,653 firm dyads, which is created by combining the selected 

1,143 firms. In addition, the five proxies of independent variables (inter-firm technological 

diversity, number of overlapped categories, ratio of overlapped categories, original cosine 

diversity, hierarchy-adjusted cosine diversity, and proposed cosine diversity) are computed. The 

time window for evaluation of the technological portfolio is 2000–2002, when each observed 

firm applied for patents before the sampling year, 2003. 

In addition, as for an examination of criterion-related validity, dependent variables and 

control variables are included. The dependent variable “number of inter-citations” is the sum of 

citations made and received between firms A and B by the end of 2006. It is worth noting that the 

citations assigned by examiners in the USPTO7 are applied rather than all the citations by both 

examiners and applicants because the examiner citations are believed to be more valid for 

reflecting actual technological linkages to prior art (Cotropia, Lemley, & Sampat, 2013). Finally, 

the characteristics of each firm in a dyad are controlled for separately; thus, “number of prior 

patents 1,” “number of prior patents 2,” “experience years 1,” and “experience years 2” are 

included.8 

Results 

Table 1 summarizes all the measures. It is worth noting that the proposed index is less skewed 

compared to other proxies. The majority of observations under contrastive proxies are 

concentrated toward one end; however, the proposed cosine diversity substantially reduces 

skewness (by approximately 90 percent). 

[Insert Table 1 here] 

                                                            
7 Data regarding examiner citations became available from 2001 as the USPTO adopted new reporting 

procedures. This study utilizes examiner citation data provided by Sampat (2012). 
8 Counting experience years is based on the NBER dataset. According to the dataset, the starting point 

is the year when a firm applies for its first patent. The earliest patent in the dataset was applied for in 1901. 



Tables 2 and 3 present the Pearson and Spearman correlation coefficients, respectively, for the 

cosine-based index.9 The bold and underlined values are validity diagonals (i.e., the monotrait-

heteromethod), and they indicate that these measures under different methods (i.e., 

categorization schemes IPC and USPC) are convergent due to significant correlations.  

Discriminant validity is examined when validity diagonals for the cosine-based index are 

compared with heterotrait-heteromethod triangles (i.e., non-formatted values) or heterotrait-

monomethod triangles (i.e., italicized values). The higher correlations of validity diagonals 

suggest that the measures (or traits) differ from others. For example, proposed cosine diversity 

differs from the number of overlapped categories. 

Most importantly, the results in these tables reveal that the proposed measure has a better 

correlation coefficient across the two categorization schemes than did the original one. For 

example, in Table 3, the Spearman correlation coefficient for proposed cosine diversity was 

0.8519, whereas the original cosine diversity was 0.0933 lower. 

[Insert Table 2 here] 

[Insert Table 3 here] 

In addition, as presented in Table 4, the internal consistency for these proxies is examined 

using Cronbach’s alpha for the resulting index under the IPC and USPC categorization schemes. 

All the alphas are large enough (i.e., above 0.8) to facilitate the interpretation that the value does 

not differ significantly across the IPC and USPC categorization schemes, regardless of which 

proxy is taken into account. This implies that the all measures’ internal consistencies are good or 

even excellent. In particular, when the alpha of the proposed measure is compared with that of 

the others, the results suggest improvements in internal consistency. For example, Cronbach’s 
                                                            
9 The number of overlapped categories and ratio of overlapped categories are proxies for similarity. 

Therefore, their correlation coefficients with original cosine diversity and improved cosine diversity are 
negative. This study is only concerned with the absolute values of the coefficients. 



alpha increases from 0.9082 to 0.9311 when the proposed approach is applied to the cosine-base 

index. 

[Insert Table 4 here] 

Despite increases in convergent validity, discriminant validity, and internal consistency for 

the proposed measures, their criterion-related validity must be examined to check for 

improvements. The criterion used for this examination is the influence of “inter-firm 

technological diversity” on “number of inter-citations.” Four proxies (number of overlapped 

categories, ratio of overlapped categories, original cosine diversity, and proposed cosine 

diversity) are investigated and compared. Table 5 presents the descriptive statistics. 

[Insert Table 5 here] 

Logistic and negative binomial models are adopted for estimation.10 Tables 6 and 7 present 

the corresponding results. All the independent variables of interest are significant at the one-

percent level, and the estimates imply that inter-firm technological diversity impedes a firm from 

citing or being cited by the other firm in a dyad. Furthermore, in terms of similarity, the results 

suggest that the more similar the two firms are, the more likelihood and the greater the number of 

inter-citations, as the estimates of the number of overlapped categories and ratio of overlapped 

categories show. 

[Insert Table 6 here] 

[Insert Table 7 here] 

The goodness-of-fit for these models are also examined. Tables 8 and 9 present the goodness-

of-fit scores for comparison of models (8)–(10) in various measures. The results show that the 

goodness-of-fit for the cosine-based index is considerably increased. For example, McFadden’s 
                                                            
10 Since the observations with value at one account for only two percent in the sample, we in addition 

employ a rare-events logistic model (King & Zeng, 2001) for estimation instead of a logistic model. In 
this case, the results are almost identical to those in Tables 6.  



R2 computed from the logistic model increases by 27.3 percent, i.e., from 0.154 to 0.196. 

Moreover, when the proposed index is compared with the hierarchy-adjusted index, McFadden’s 

R2 still increases by roughly 10 percent, implying that the present study’s approach for 

computing relatedness scores outperforms the hierarchical structure approach. 

[Insert Table 8 here] 

[Insert Table 9 here] 

 

DISCUSSION AND CONCLUSION 

Through a careful examination of validity, this study’s proposed methodology has been proven 

to be valid and effective for measuring category-based diversity in the context of non-

independent categories (such as technology or industry). The problem solved in this study has 

long been neglected and has arguably led to failure in measurement. Moreover, the universal 

application of category-based indices urges one to seek a solution to this problem. In general, the 

mathematic proof demonstrates that the development of this solution mainly consists of three 

consecutive steps along a constructive path: 1) establishing an oblique coordinates system 

according to the measured relatedness between non-independent categories; 2) converting the 

basis between an oblique system and a Cartesian system; and 3) transforming the vectors used in 

the cosine-based index from an oblique system to a Cartesian system. The first step is based on 

several scholars’ efforts in designing the relatedness scores for related industries or technologies 

(Breschi et al., 2003; Bryce & Winter, 2009; Teece et al., 1994). However, the other two steps 

are novel in strategic management research and social science.  



Mathematical interpretation and generality 

Mathematically speaking, the solution framework in this study employs linear algebra techniques 

analogous to those used in the Mahalanobis distance (Mahalanobis, 1936) and principal 

component analysis (Pearson, 1901), although the latter two adopt a different relatedness matrix 

for weighting the original indices and serve for different purposes. For example, principal 

component analysis is designed for obtaining several “principal” inter-independent canonical 

variates out of numerous variables. However, in this study’s application of similar techniques, 

the issue which variates or categories are of principal and they does not affect the resulting 

indices. In addition, the sample’s covariance matrix in the principal component analysis can be 

regarded as a type of relatedness matrix, which takes covariance as a proxy of relatedness instead 

of that produced from this study. Other approaches can also produce relatedness matrix, such as 

the revealed relatedness economic regression model by Neffke and Henning (2008). 

In terms of linear algebra, the relatedness matrix ܯ in this study is equivalent to the “metric 

matrix” or “metric tensor” (Vaughn, 2008), in which any entry ݎ௜௝ equals the dot product of basis 

vectors ܣ௜  and ܣ௝ . Therefore, if two column vectors ݔ  and ݕ  are assumed, then accordingly, 

 this ,ܯ With this metric matrix 11.ܯ with respect to metric ݕ and ݔ is the dot product of ݕܯ்ݔ

study’s approach can be further extended to other category-based indices such as the Herfindahl 

index, entropy index, Euclidean distance, and Pearson’s correlation coefficient, where their 

operations are based on the dot product between vectors. The adjustments for these indices are 

exemplified as follows:12 13 

                                                            
 ܫ where ,ܫ with respect to the Euclidean metric ݕ and ݔ can be regarded as the dot product of ݕ்ݔ 11

represents unit matrix. 
12 The adjusted Euclidean distance becomes equivalent to the Mahalanobis distance if ିܯଵ  is the 

covariance matrix of the sample. 
13 The term ln ቀ

ଵ

௣
ቁ represents the column vector ቀln ቀ

ଵ

௣భ
ቁ , … , ln ቀ

ଵ

௣೙
ቁቁ in the adjusted entropy index. 
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Interestingly, a similar solution has been found to correct the Herfindahl index, which is 

called the concentric index. It was originally defined by Caves et al. (1980) and applied in 

several studies (Montgomery & Wernerfelt, 1988; Robins & Wiersema, 1995; Wernerfelt & 

Montgomery, 1988). The definition is given below and its alternative expression is further 

developed in terms of vector and matrix operations: 

݀஼௢௡௖௘௡௧௥௜௖ ൌ ෍݌௝෍݌௜݀௜௝

௡

௜ୀଵ

௡

௝ୀଵ

ൌ 	݌ܦ்݌

where ݌ሺ݌ଵ, ,௜݌	… …  .௡ሻ is the same as it is defined in the original and adjusted Herfindahl index݌

However, the resulting matrix ܦ  differs from this study’s relatedness matrix ܯ  in that each 

element ݀௜௝ in the former refers to the distance (rather than the relatedness) between i and j. For 

example, according to its definition, when SIC is utilized in computation, ݀௜௝ is zero if i and j 

include the same three-digit SIC code (including ݀௜௝  when ݅ ൌ ݆), ݀௜௝  equals one if they have 

different three-digit codes but identical two-digit codes, and ݀௜௝  equals two if they include 

different two-digit codes (Caves et al., 1980; Montgomery & Wernerfelt, 1988; Wernerfelt & 

Montgomery, 1988). The distance measure can be regarded as the opposite of the relatedness 

measure. Thus, D can be scaled to [0, 1] by dividing the maximum value of two and then scaling 

the distance matrix ܦᇱ ൌ
ଵ

ଶ
 ᇱ are further subtractedܦ In addition, all the distance scores ݀′௜௝ in .ܦ

from the maximum value of one to obtain the relatedness matrix	ܯ. Finally, ܦ in the concentric 



index can be replaced and represented in terms of ܯ, and the relationship between the concentric 

index and the hierarchy-adjusted Herfindahl index can be derived: 
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The concentric index employs a hierarchical approach to measure the relatedness scores 

between non-independent categories. Instead, this study’s approach for measuring relatedness 

scores in nature adopts a peer-to-peer (P2P) method in which all categories are treated as flat. 

This approach more closely reflects the inherent relatedness between any pair of related 

technology fields rather than indiscriminately assigning weights that merely depend on manually 

organized hierarchical structures. This is because these hierarchical categorization systems (such 

as SIC, IPC, and USPC) have been argued as having shortcomings of varying degrees of breadth 

in the classes (Rumelt, 1982). Results from the validity examination support the proposed P2P 

approach, in which the goodness-of-fit scores for the resulting index are improved provided that 

they are adjusted for relatedness. Moreover, the proposed cosine-based diversity index exhibits 

greater correlations and Cronbach’s alpha across the IPC and USPC categorization schemes, 

which implies that this proposed approach can be applied, regardless of a particular 

categorization scheme. Moreover, this merit can be attributed to the proposed P2P approach.  

An alternative perspective of understanding the benefits of this proposed approach might 

suggest that the relatedness is embedded in category-based indices as if they are controlled when 

regressions are conducted. However, these relatedness factors have drawn limited attention. But 

what if they are taken into consideration and controlled? In this case, is this proposed approach 

still attractive for empirical analysis? The answer is “yes.” The introduction of these relatedness 



factors may further incur multicollinearity problems as they are not inter-independent. This 

proposed approach provides a comprehensive solution to control for these factors, ensuring that 

there is no need to create dozens of control variables to capture the characteristics of all the 

categories. 

In addition, another virtue of this study is that it provides a better way to compute the 

relatedness for technologies or industries. By harnessing co-occurrences as well as single 

occurrences together, it utilizes the relative complete information collected from empirical data. 

Although this study follows the approach by Teece et al., in which random technology 

assignment likelihood is assumed and a hypergeometric distribution is thus used to correct for 

occurrences, the inclusion of single occurrences is also applicable to other co-occurrences-based 

approaches such as revealed relatedness (Neffke & Henning, 2008). 

Limitations 

Despite the contributions and application of the present study’s approach, there remain several 

limitations. First, the relatedness scores may have to be further refined if scholars need to employ 

category-based indices to a different domain. For example, in this study’s approach, the angle 

between any two axes in an n-dimensional oblique coordinates system is non-obtuse. That is, it is 

assumed that categories would not be negatively associated. However, in other application 

domains, such a negative relationship might be needed. In this case, other methods for 

constructing the relatedness scores can be considered as replacements. Second, when the validity 

examination was conducted, only four-digit IPCs or three-digit USPCs were employed. Although 

applications of the proposed indices could be extended to other granularities, a cross-level 

application (e.g., regarding A01B and B01 as two categories in application for a possible reason 

of miscategorization) may have difficulty determining the vectors for computation. In addition, 



values calculated on different levels might differ greatly; thus, a cross-level comparison is not 

feasible. This flaw, which appears in both the original and proposed indices, should be resolved 

in future research even though there are limited needs for cross-level analyses in empirical 

research.  

Hopefully, the new category-based indices proposed in this study can both encourage further 

empirical research as well as prompt scholars to reconsider taxonomy and measurement issues 

before applying these imperfect or even incorrect measures.   
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Table 1. Summary of measures 
Variables Obs. Mean S.D. Skewness Min Max

Cosine, IPC  

Number of overlapped categories 652653 1.4824 1.8920 2.0193 0 22

Ratio of overlapped categories 652653 0.0521 0.0706 2.6945 0 1

Original cosine diversity 652653 0.9368 0.1459 -3.6048 0.0002 1

Proposed cosine diversity 652653 0.6213 0.2029 -0.4498 0 1

Cosine, USPC  

Number of overlapped categories 652653 3.0227 3.4772 1.8396 0 38

Ratio of overlapped categories 652653 0.0650 0.0741 2.0806 0 1

Original cosine diversity 652653 0.9382 0.1375 -3.6539 0.0027 1

Proposed cosine diversity 652653 0.5910 0.1910 -.0.3785 0 1

 
 

Table 2. Multitrait-multimethod matrix for a cosine-based index (Pearson) 
 IPC USPC 
 Num. Ratio Original Proposed Num. Ratio Original Proposed
IPC    
Number of overlapped 
categories 

   

Ratio of overlapped 
categories 

0.8545   

Original cosine 
diversity 

−0.6022 −0.7023   

Proposed cosine 
diversity 

−0.6875 −0.6763 0.6872   

    
USPC    
Number of overlapped 
categories 

0.8201 0.6545 −0.5510 −0.6936   

Ratio of overlapped 
categories 

0.7276 0.7865 −0.6614 −0.7103 0.8750   

Original cosine 
diversity 

−0.6424 −0.7132 0.8334 0.6646 −0.6223 −0.7218  

Proposed cosine 
diversity 

−0.6925 −0.6468 0.6099 0.8727 −0.7544 −0.7495 0.7021 

n = 652,653. All correlation coefficients are significant (p < 0.001). 
 
 

  



Table 3. Multitrait-multimethod matrix for a cosine-based index (Spearman) 
 IPC USPC 
 Num. Ratio Original Proposed Num. Ratio Original Proposed
IPC    
Number of overlapped 
categories 

   

Ratio of overlapped 
categories 

0.9665   

Original cosine 
diversity 

−0.9171 −0.9100   

Proposed cosine 
diversity 

−0.6700 −0.6560  0.7117   

    
USPC    
Number of overlapped 
categories 

0.7623  0.7055 −0.7189 −0.6933   

Ratio of overlapped 
categories 

0.7322  0.7183 −0.7074 −0.6864  0.9709   

Original cosine 
diversity 

−0.7409 −0.7108 0.7586 0.7301 −0.9130 −0.9103  

Proposed cosine 
diversity 

−0.6777 −0.6377 0.6830 0.8519 −0.7832 −0.7647 0.8227 

n = 652,653. All correlation coefficients are significant (p < 0.001). 



Table 4. Cronbach’s alpha 
Variables Alpha Alpha (std.) 

Number of overlapped categories 0.8156 0.9011 

Ratio of overlapped categories 0.8799 0.8805 

Original cosine diversity 0.9082 0.9091 

Proposed cosine diversity 0.9311 0.9320 

 
 
Table 5. Descriptive statistics 
Variables 1 2 3 4 5 6 7 8 9 10 

1.   Number of inter-citations 
2.   Number of overlapped 

categories 
0.1127 

   
3.   Ratio of overlapped 

categories 
0.1210 0.8545 

  
4.   Original cosine diversity −0.1585 −0.6022 −0.7023
5.   Hierarchy-adjusted cosine 

diversity 
−0.1146 −0.6312 −0.6495 0.6986

  
6.   Proposed cosine diversity −0.1072 −0.6875 −0.6763 0.6872 0.7536

7.   Number of prior patents 1 0.0259 0.1799 0.0694 −0.0432 −0.0479 −0.0713

8.   Number of prior patents 2 0.0226 0.1654 0.0657 −0.0214 −0.0232 −0.0438 0.0003 

9.   Experience years 1 0.0231 0.0764 0.0159 −0.0186 −0.0236 −0.0311 0.0674 0.0266 

10. Experience years 2 0.0269 0.1026 0.0535 −0.0566 −0.0572 −0.0577 0.0082 0.0871 0.2921

Mean 0.0518 1.4824 0.0521 0.9368 0.7755 0.6213 52.9935 51.6872 21.5810 11.6875

S.D. 0.8152 1.8920 0.0706 0.1459 0.2280 0.2029 19.1868 18.6492 10.4660 7.9719

Min 0 0 0 0.0002 0.0002 0 30 30 2 2

Max 169 22 1 1 1 1 99 99 101 101

n = 652,653. 
 

 



Table 6. Logistic estimates for inter-citations and inter-firm technological diversity (IPC) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Variables w/o controls w/o controls w/o controls w/o controls w/o controls w/ controls w/ controls w/ controls w/ controls w/ controls
           
Number of overlapped categories 0.4126***     0.3852***     
 (0.0027)     (0.0029)     
Ratio of overlapped categories  9.0612***     9.1213***    
  (0.0699)     (0.0703)    
Original cosine diversity   −4.0663***     −4.0494***   
   (0.0245)     (0.0259)   
Hierarchy-adjusted cosine diversity    −4.3477***     −4.2929***  
    (0.0291)     (0.0301)  
Proposed cosine diversity     −6.0197***     −5.8567***
     (0.0387)     (0.0399) 
           
Number of prior patents 1      0.0051*** 0.0155*** 0.0153*** 0.0142*** 0.0136***
      (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) 
Number of prior patents 2      0.0026*** 0.0127*** 0.0143*** 0.0133*** 0.0128***
      (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) 
Experience years 1      0.0201*** 0.0247*** 0.0248*** 0.0237*** 0.0204***
      (0.0007) (0.0006) (0.0006) (0.0006) (0.0006) 
Experience years 2      0.0195*** 0.0263*** 0.0238*** 0.0243*** 0.0209***
      (0.0009) (0.0008) (0.0009) (0.0009) (0.0009) 
Constant −4.8023*** −4.5359*** −0.2559*** −0.9760 −0.7830*** −5.8842*** −7.0519*** −2.8084*** −3.4109*** −3.0806***
 (0.0122) (0.0108) (0.0211) (0.0167) (0.0169) (0.0395) (0.0399) (0.0438) (0.0423) (0.0426) 
           
Chi2 23828 16812 27658 22259 24149 25666 22937 30753 27151 28611 
df 1 1 1 1 1 5 5 5 5 5 

n = 652,653. Robust standard errors in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 

 
  



Table 7. Negative binomial estimates for number of inter-citations and inter-firm technological diversity (IPC) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Variables w/o controls w/o controls w/o controls w/o controls w/o controls w/ controls w/ controls w/ controls w/ controls w/ controls
           
Number of overlapped categories 0.6566***     0.6303***     
 (0.0083)     (0.0085)     
Ratio of overlapped categories  17.6423***     16.9757***    
  (0.2120)     (0.2074)    
Original cosine diversity   −6.6685***     −6.3513***   
   (0.0804)     (0.0639)   
Hierarchy-adjusted cosine diversity    −5.3443***     −5.3712***  
    (0.0500)     (0.0504)  
Proposed cosine diversity     −7.3852***     −7.3461***
     (0.0737)     (0.0724) 
           
Number of prior patents 1      0.0051*** 0.0147*** 0.0160*** 0.0159*** 0.0142***
      (0.0011) (0.0008) (0.0006) (0.0007) (0.0007) 
Number of prior patents 2      0.0021* 0.0114*** 0.0152*** 0.0146*** 0.0132***
      (0.0012) (0.0008) (0.0007) (0.0008) (0.0008) 
Experience years 1      0.0250*** 0.0420*** 0.0444*** 0.0388*** 0.0378***
      (0.0019) (0.0017) (0.0016) (0.0015) (0.0016) 
Experience years 2      0.0197*** 0.0247*** 0.0249*** 0.0245*** 0.0223***
      (0.0023) (0.0017) (0.0015) (0.0015) (0.0016) 
Constant −4.7955*** −4.7625*** 2.5103*** 0.1647 0.3637*** −5.9742*** −7.5126*** −0.9397*** −2.7938*** −2.3948***
 (0.0226) (0.0203) (0.0766) (0.0334) (0.0345) (0.0942) (0.0752) (0.0827) (0.0731) (0.0721) 
           
Chi2 6289 6925 6876 11446 10048 6653 9084 11627 13257 12119 
df 1 1 1 1 1 5 5 5 5 5 

n = 652,653. Robust standard errors in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1 

 

 



Table 8. Comparison of the goodness-of-fit for logistic models (IPC) 

Model (LOGIT) Proposed cosine index
Difference 

(w/ original cosine index) 
Difference 

(w/ hierarchy-adjusted cosine index)

Log-Lik Intercept −71053.418 0.000 0.000 

Log-Lik Full −57136.656 2972.966 1202.112 

Likelihood Ratio 27833.525 5945.932 2404.224 

McFadden’s R2 0.196 0.042 0.017 

McFadden’s Adj R2 0.196 0.042 0.017 

Maximum Likelihood R2 1.000 0.000 0.000 

Cragg & Uhler’s R2 1.000 0.000 0.000 

McKelvey & Zavoina’s R2 0.348 0.172 0.063 

Efron’s R2 0.068 0.018 0.004 

Count R2 0.977 0.000 0.000 

Adj Count R2 −0.001 0.016 0.001 

AIC 114285.312 −5945.932 −2404.224 

BIC 114353.645 −5945.932 −2404.224 

 
 

Table 9. Comparison of the goodness-of-fit for negative binomial models (IPC) 

Model (NBREG) Proposed cos. 
Difference 

(w/ original cosine index) 
Difference 

(w/ hierarchy-adjusted cosine index)

Log-Lik Intercept Only −91592.545 0.000 0.000 

Log-Lik Full Model −77303.332 2038.500 1159.180 

Likelihood Ratio 28578.426 4077.001 2318.361 

McFadden’s R2 0.156 0.022 0.013 

McFadden’s Adj R2 0.156 0.022 0.013 

Maximum Likelihood R2 1.000 0.000 0.000 

Cragg & Uhler’s R2 1.000 0.000 0.000 

AIC 154620.664 −4077.000 −2318.361 

BIC 154700.386 −4077.000 −2318.361 

 
 

   



APPENDIX 

Tables for criterion-related validation of a cosine-based diversity index under the USPC 

scheme 

Logistic estimates for inter-citations and inter-firm technological diversity (USPC) 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Variables w/o controls w/o controls w/o controls w/o controls w/ controls w/ controls w/ controls w/ controls
         
Number of overlapped categories 0.2291***    0.2149***    
 (0.0015)    (0.0017)    
Ratio of overlapped categories  10.1403***    9.9879***   
  (0.0762)    (0.0755)   
Original cosine diversity   −4.5119***    −4.4644***  
   (0.0257)    (0.0274)  
Proposed cosine diversity    −6.8382***    −6.6620***
    (0.0431)    (0.0449) 
         
Number of prior patents 1     0.0031*** 0.0137*** 0.0159*** 0.0137***
     (0.0005) (0.0004) (0.0004) (0.0004) 
Number of prior patents 2     0.0015*** 0.0112*** 0.0148*** 0.0130***
     (0.0005) (0.0004) (0.0004) (0.0004) 
Experience years 1     0.0179*** 0.0226*** 0.0231*** 0.0192***
     (0.0007) (0.0006) (0.0006) (0.0006) 
Experience years 2     0.0196*** 0.0260*** 0.0206*** 0.0181***
     (0.0009) (0.0008) (0.0009) (0.0009) 
Constant −4.8861*** −4.8115*** 0.1308*** −0.5713*** −5.7431*** −7.0649*** −2.4277*** −2.8228***
 (0.0125) (0.0123) (0.0221) (0.0175) (0.0391) (0.0396) (0.0445) (0.0429) 
         
Chi2 23068 17713 30922 25194 25247 24124 32841 28966 
df 1 1 1 1 5 5 5 5 

Robust standard errors in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 

 
 

  



Negative binomial estimates for number of inter-citations and inter-firm technological diversity (USPC) 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Variables w/o controls w/o controls w/o controls w/o controls w/ controls w/ controls w/ controls w/ controls
         
Number of overlapped categories 0.3729***    0.3646***    
 (0.0047)    (0.0048)    
Ratio of overlapped categories  17.9215***    17.3663***   
  (0.1861)    (0.1830)   
Original cosine diversity   −7.3170***    −6.9101***  
   (0.0842)    (0.0672)  
Proposed cosine diversity    −8.2255***    −8.1273***
    (0.0780)    (0.0772) 
         
Number of prior patents 1     0.0021* 0.0126*** 0.0164*** 0.0147***
     (0.0011) (0.0008) (0.0006) (0.0007) 
Number of prior patents 2     −0.0007 0.0092*** 0.0157*** 0.0137***
     (0.0012) (0.0008) (0.0007) (0.0008) 
Experience years 1     0.0246*** 0.0407*** 0.0400*** 0.0338***
     (0.0019) (0.0017) (0.0015) (0.0015) 
Experience years 2     0.0214*** 0.0246*** 0.0228*** 0.0195***
     (0.0026) (0.0017) (0.0015) (0.0016) 
Constant −4.9678*** −5.1696*** 3.0383*** 0.5283*** −5.8633*** −7.6501*** −0.3967*** −2.1752***
 (0.0307) (0.0226) (0.0803) (0.0339) (0.0927) (0.0709) (0.0859) (0.0707) 
         
Chi2 6400 9274 7546 11110 7453 11241 13128 13405 
df 1 1 1 1 5 5 5 5 

Robust standard errors in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 

 

Comparison of the goodness-of-fit for logistic models (USPC) 

Model (LOGIT) Proposed cos. 
Difference 

(w/ Original cos.) 

Log-Lik Intercept −71053.418 0.000 

Log-Lik Full −56193.131 2848.538 

Likelihood Ratio 29720.574 5697.076 

McFadden’s R2 0.209 0.040 

McFadden’s Adj R2 0.209 0.040 

Maximum Likelihood R2 1.000 0.000 

Cragg & Uhler’s R2 1.000 0.000 

McKelvey & Zavoina’s R2 0.374 0.194 

Efron’s R2 0.078 0.019 

Count R2 0.977 0.000 

Adj Count R2 −0.002 0.021 

AIC 112398.262 −5697.076 

BIC 112466.595 −5697.076 

 

  



Comparison of the goodness-of-fit for negative binomial models (USPC) 

Model (NBREG) Proposed cosine index 
Difference 

(w/ original cosine index) 

Log-Lik Intercept Only −91592.545 0.000 

Log-Lik Full Model −76436.076 1570.170 

Likelihood Ratio 30312.939 3140.340 

McFadden’s R2 0.165 0.017 

McFadden’s Adj R2 0.165 0.017 

Maximum Likelihood R2 1.000 0.000 

Cragg & Uhler’s R2 1.000 0.000 

AIC 152886.152 −3140.340 

BIC 152965.874 −3140.340 

 

Definition of the goodness-of-fit measures 
Measures of goodness-of-fit Definition 

Likelihood Ratio 2ሺܮܮெ െ  ଴ሻܮܮ

McFadden’s R2 1 െ
ெܮܮ
଴ܮܮ

 

McFadden’s Adjusted R2 1 െ
ெܮܮ െ ܭ
଴ܮܮ

 

Maximum Likelihood R2 1 െ ሺ݁௅௅బି௅௅ಾሻ
ଶ
ேൗ  

Cragg & Uhler’s R2 
1 െ ሺ݁௅௅బି௅௅ಾሻ

ଶ
ேൗ

1 െ ሺ݁௅௅బሻ
ଶ
ேൗ

 

McKelvey & Zavoina’s R2 1 െ
ሻߝሺݎܸܽ
ሺܻ∗ሻݎܸܽ

 

Efron’s R2 1 െ
∑ሺݕ௜ െ ௜ሻଶݕ

∑ሺݕ௜ െ ሻଶݕ
 

Count R2 
݊
ܰ

 

Adjusted Count R2 
݊ െmaxሺ݀݁ݒݎ݁ݏܾ݋ ,ݏ݁ݏݏ݁ܿܿݑݏ ሻݏ݁ݎݑ݈݂݅ܽ	݀݁ݒݎ݁ݏܾ݋

ܰ െmaxሺ݀݁ݒݎ݁ݏܾ݋ ,ݏ݁ݏݏ݁ܿܿݑݏ ሻݏ݁ݎݑ݈݂݅ܽ	݀݁ݒݎ݁ݏܾ݋
 

AIC െ2ሺܮܮெ െ  ሻܭ

BIC െ2ܮܮெ ൅ ܭ ∗ lnܰ 

 .ெ:  log likelihood for the full modelܮܮ
 .଴:  log likelihood for the null modelܮܮ
ܰ:   number of observations. 
 .number of parameters   :ܭ
݊:   number of correctly classified observations. 
 .ሻ: variance of errorߝሺݎܸܽ
 .ሺܻ∗ሻ: variance of estimated dependent variablesݎܸܽ
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